Skip to main content

Advertisement

Log in

Isolation, Characterization and Community Diversity of Indigenous Putative Toluene-Degrading Bacterial Populations with Catechol-2,3-Dioxygenase Genes in Contaminated Soils

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Indigenous bacterial assemblages with putative hydrocarbon-degrading capabilities were isolated, characterized and screened for the presence of the catechol-2,3-dioxygenase (C23O) gene after exposure to toluene in two different (i.e., pristine and conditioned) soil communities. The indigenous bacterial populations were exposed to the hydrocarbon substrate by the addition of toluene concentrations, ranging from 0.5 % to 10 % V/W in 10 g of each soil and incubated at 30 °C for upwards of 12 days. In total, 25 isolates (11 in pristine soil and 14 in conditioned soil) were phenotypically characterized according to standard microbiological methods and also screened for the 238-bp C23O gene fragment. Additionally, 16S rRNA analysis of the isolates identified some of them as belonging to the genera Bacillus, Exiguobacterium, Enterobacter, Pseudomonas and Stenotrophomonas. Furthermore, the two clone libraries that were constructed from these toluene-contaminated soils also revealed somewhat disparate phylotypes (i.e., 70 % Actinobacteria and Firmicutes to 30 % Proteobacteria in conditioned soil, whereas in pristine soil: 66 % Actinobacteria and Firmicutes; 21 % Proteobacteria and 13 % Bacteroidetes). The differences observed in bacterial phylotypes between these two soil communities may probably be associated with previous exposure to hydrocarbon sources by indigenous populations in the conditioned soil as compared to the pristine soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Beck AJ, Alcock RE, Wilson SC, Wang MJ, Wild SR (1995) Long-term persistence of organic chemicals in sewage sludge-amended agriculture land: a soil quality perspective. Adv Agron 55:345–391

    Article  CAS  Google Scholar 

  3. Borneman J, Skroch PW, O'Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62(6):1935–1943

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bujang M, Ibrahim NA, Eh Rak A (2013) Biodegradation of oily wastewater by pure culture of Bacillus cereus. ARPN J Agric Biol Sci 8:108–115

    Google Scholar 

  5. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  6. Chao A (1987) Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  7. Chao WL, Hsu SF (2004) Response of the soil bacterial community to the addition of toluene and toluene-degrading bacterial. Soil Biol Biochem 36:479–487

    Article  CAS  Google Scholar 

  8. Chikere CB, Azubuike CC (2013) Catechol-2,3-dioxygenase screening in putative hydrocarbon utilizing bacteria. Int Res J Microbiol 4:1–6

    Google Scholar 

  9. de Smet MJ, Kingma J, Witholt B (1978) The effect of toluene on the structure and permeability of the outer and inner membranes of Escherichia coli. Biochem Biophys Acta 506:64080

    Google Scholar 

  10. Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF (2010) Microbial biodegradation and metabolite toxicity of three pyrimidine-based cation ionic liquids. R Soc Chem 12:701–712

    CAS  Google Scholar 

  11. Ey L, Jun YS, Cho KS, Ryu HW (2002) Degradation characteristics of toluene, benzene, ethylbenzene and xylene by Stenotrophomonas maltophilia T3-c. J Air Manag Assoc 52:400–406

    Google Scholar 

  12. French CE, Nicklin S, Bruce NC (1998) Aerobic Degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64(8):2864–2868

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Frenzel M, James P, Burton S, Rowland SJ, Lappin-Scott HM (2009) Towards bioremediation of toxic unresolved complex mixtures of hydrocarbons: identification of bacteria capable of rapid degradation of alkyltetralins. J Soils Sediment 9:129–136

    Article  CAS  Google Scholar 

  14. Hanson JR, Macalady JL, Harris D, Scow KM (1999) Linking toluene degradation with specific microbial populations in soil. Appl Environ Microbiol 65:5403–5408

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Hiroshi H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  Google Scholar 

  16. Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70:1777–1786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kobashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455

    Article  Google Scholar 

  18. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and bacterial community response in Gulf of Mexico Beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Leboffe MJ, Pierce BE (2010) Microbiology laboratory theory and application, 3rd ed. Morton Publishing Company, 772 pp

  20. Liu Z, Yang C, Qiao C (2007) Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett 277:150–156

    Article  CAS  PubMed  Google Scholar 

  21. Maier RM, Pepper IL Gerba CP (2000) Environmental microbiology. Academic Press, 585 pp

  22. Mesarch MB, Nakatsu CH, Nies L (2000) Development of Catechol-2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol 66:678–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–79

    Article  CAS  PubMed  Google Scholar 

  24. Murray K, Williams PA (1974) Role of catechol and methylcatechol as inducers of aromatic metabolism in Pseudomonas putida. J Bacteriol 117:1153–1157

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Nahar N, Alauddin M, Quilty B (2000) Toxic effects of toluene on the growth of activated sludge bacteria. World J Microbiol Biotechnol 16:307–311

    Article  CAS  Google Scholar 

  26. Oh Y-S, Bartha R (1997) Construction of a bacterial consortium for the biofilteration of benzene, toluene and xylene emissions. World J Microbiol Biotechnol 13:627–632

    Article  CAS  Google Scholar 

  27. Olapade OA (2013) Molecular characterization of bacterial phylogenetic and functional groups at the site of the Deepwater Horizon Oil Spill along the Gulf of Mexico. J Pet Environ Biotechnol 4:144. doi:10.4172/2157-7463.1000144

    Article  Google Scholar 

  28. Olapade OA (2013) Occurrence, ubiquity and proficiency of hydrocarbon-degrading microbial assemblages in nature. J Pollut Effect Control 1:e106. doi:10.4172/jpe.1000e106

    Google Scholar 

  29. Olapade OA, Leff LG (2004) The effect of toluene on the microbial community of a river in Northeastern Ohio, USA. J Freshw Ecol 18(3):465–477

    Article  Google Scholar 

  30. Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  CAS  PubMed  Google Scholar 

  31. Popp N, Schlöman M, Mau M (2006) Bacterial diversity in the active stage of a remediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152:3291–3304

    Article  CAS  PubMed  Google Scholar 

  32. Potter TL (1992) Fingerprinting petroleum products: unleaded gasolines. In: Kostecki PT, Calabrese EJ (eds) Petroleum contaminated soils, vol 2. Lewis Publishers, Chelsea, pp 88–92

    Google Scholar 

  33. Riser-Roberts E (1998) Remediation of petroleum contaminated soils. Lewis Publishers, Washington, DC

    Book  Google Scholar 

  34. Schloss PD, Handelsman J (2006) Introducing SONS, a tool for operational taxonomic unit-based comparison of microbial community memberships and structures. Appl Environ Microbiol 72:6773–6779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Singh BJ, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70(8):4855–4863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Smith MR (1990) The biogedradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    Article  CAS  PubMed  Google Scholar 

  37. Sahar S (2006) Detection of meta- and ortho-cleavage dioxygenases in bacterial phenol-degraders. J Appl Environ Microbiol Manag 10:75–81

    Google Scholar 

  38. Tay ST-L, Hemond HF, Polz MF, Canavaugh CM, Dejesus I, Krumholz LR (1998) Two new Mycobacterium strains and their role in toluene degradation in a contaminated stream. Appl Environ Microbiol 64:1715–1720

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Tay ST-L, Hemond HF, Polz MF, Canavaugh CM, Krumholz LR (1999) Importance of Xanthobacter autotrophicus in toluene biodegradation within a contaminated stream. Syst Appl Microbiol 22:113–118

    Article  CAS  PubMed  Google Scholar 

  40. van Elsas JD, Jansson JK, Trevors JK (2007) Modern soil microbiology, 2nd edn. CRC Press, New York, pp 387–429

    Google Scholar 

  41. Young LY, Cerniglia CG (1995) Microbial transformation and degradation of toxic organic chemicals. Wiley, New York

    Google Scholar 

  42. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159(10):2675–2683. doi:10.1016/j.envpol.2011.05.031. Epub 2011 Jun 23

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Environ Biotechnol 65:124–131

    CAS  Google Scholar 

  44. Zhao HP, Liang SH, Yang X (2011) Isolation and characterization of catechol-2,3-dioxygenase genes from phenanthrene degraders Sphingomonas, sp. ZP1 and Pseudomonas sp. ZP2. Environ Technol 32:1895–1901

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported mostly by the Albion College Hewlett-Mellon Faculty Development Funds to OAO for the 2013 summer session. We particularly thank the staff members of Albion Motors for granting unrestricted access to their premises during soil sampling. Also our sincere appreciation goes to Melissa Goodell, Kurt Hellman, Dave Carey, Freyja Davis and Lori Duff for assistance with various supplies and materials that were needed during the study period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola A. Olapade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olapade, O.A., Ronk, A.J. Isolation, Characterization and Community Diversity of Indigenous Putative Toluene-Degrading Bacterial Populations with Catechol-2,3-Dioxygenase Genes in Contaminated Soils. Microb Ecol 69, 59–65 (2015). https://doi.org/10.1007/s00248-014-0466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0466-6

Keywords

Navigation