Skip to main content
Log in

Reduction of Selenite by Azospirillum brasilense with the Formation of Selenium Nanoparticles

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The ability to reduce selenite (SeO3 2−) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO3 2− was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO3 2− in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for “green synthesis” of bioavailable amorphous red selenium nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avazeri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Vermeglio A (1997) Tellurite and selenate reductase activity of nitrate reductases from Escherichia coli: correlation with tellurite resistance. Microbiology 143:1181–1189

    Article  CAS  PubMed  Google Scholar 

  2. Basaglia M, Toffanin A, Baldan E, Bottegal M, Shapleigh JP, Casella S (2007) Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol Lett 269(1):124–130

    Article  CAS  PubMed  Google Scholar 

  3. Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 107:77–136

    Article  Google Scholar 

  4. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577

    Article  CAS  PubMed  Google Scholar 

  5. Belimov AA, Dietz K (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155(2):113–121

    Article  CAS  PubMed  Google Scholar 

  6. Buchs B, Evangelou MW, Winkel LH, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47(5):2401–2407

    Article  CAS  PubMed  Google Scholar 

  7. Day JM, Döbereiner J (1976) Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol Biochem 8:45–50

    Article  CAS  Google Scholar 

  8. de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38(2):466–474

    Article  CAS  PubMed  Google Scholar 

  9. DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160(3):241–247. doi:10.1007/BF00249131

    CAS  Google Scholar 

  10. de Souza MP, Huang CPA, Chee N, Terry N (2009) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  Google Scholar 

  11. Doran JW (1982) Microorganisms and the biological cycling of selenium. In: Marshall KC (ed) Advances in microbial ecology. Plenum, New York, pp 1–32. http://link.springer.com/chapter/10.1007/978-1-4615-8318-9_1

  12. Dungan RS, Yates SR, Frankenberger WT (2003) Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ Microbiol 5(4):287–295

    Article  CAS  PubMed  Google Scholar 

  13. Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326(2):99–108

    Article  CAS  PubMed  Google Scholar 

  14. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  15. Gao X (2012) Selenium nanoparticles with improved biological effects. US Patent Application 13/206,542 (filed Aug. 10, 2011). Publ. no. 2012/0202062 A1 (publ. date: August 9, 2012). http://www.faqs.org/patents/app/20120202062

  16. Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132(1):199–204

    Article  CAS  Google Scholar 

  17. Hockin S, Gadd GM (2006) Removal of selenate from sulfate-containing media by sulfate-reducing bacterial biofilms. Environ Microbiol 5:816–826

    Article  Google Scholar 

  18. Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210

    Article  CAS  Google Scholar 

  19. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130(3):465–476

    Article  CAS  PubMed  Google Scholar 

  20. Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23(3):305–314

    Article  CAS  PubMed  Google Scholar 

  21. Hunter WJ, Kuykendall LD (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 55(4):344–349

    Article  CAS  PubMed  Google Scholar 

  22. Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 58:493–498

    Article  CAS  PubMed  Google Scholar 

  23. Ikram M, Faisal M (2010) Comparative assessment of selenite (SeIV) detoxification to elemental selenium (Se0) by Bacillus sp. Biotechnol Lett 32:1255–1259

    Article  CAS  PubMed  Google Scholar 

  24. Kamnev AA, Renou-Gonnord M-F, Antonyuk LP, Colina M, Chernyshev AV, Frolov I, Ignatov VV (1997) Spectroscopic characterization of the uptake of essential and xenobiotic metal cations in cells of the soil bacterium Azospirillum brasilense. Biochem Mol Biol Int 41(1):123–130

    CAS  PubMed  Google Scholar 

  25. Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Kulikov LA, Perfiliev YuD, Polissiou MG, Gardiner PHE (2006) Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. Anal Chim Acta 573–574:445–452

  26. Kamnev AA, Sadovnikova JN, Tarantilis PA, Polissiou MG, Antonyuk LP (2008) Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic study. Microb Ecol 56:615–624

    Article  CAS  PubMed  Google Scholar 

  27. Kamnev AA, Tugarova AV, Tarantilis PA, Gardiner PHE, Polissiou MG (2012) Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: the effects of copper(II). Appl Soil Ecol 61:213–216

    Article  Google Scholar 

  28. Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279(49):50662–50669

    Article  CAS  PubMed  Google Scholar 

  29. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Kramer GF, Ames BN (1988) Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res Fundam Mol Mechan Mutagen 201(1):169–180. doi:10.1016/0027-5107(88)90123-6

    Article  CAS  Google Scholar 

  31. Kuzmin PG, Shafeev GA, Voronov VV, Raspopov RV, Arianova EA, Trushina EN, Gmoshinskii IV, Khotimchenko SA (2012) Bioavailable nanoparticles obtained in laser ablation of a selenium target in water. Quant Electron 42(11):1042–1044. doi:10.1070/QE2012v042n11ABEH014754

    Article  Google Scholar 

  32. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407(12):3620–3633

    Article  CAS  PubMed  Google Scholar 

  33. Losi ME, Frankenberger WT Jr (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63(8):3079–3084

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  35. Mennini T (2012) Elemental selenium nanoparticles with reduced toxicity. Nutrafoods 11: N25-N26. http://www.nutrafoods.eu/pubs/pdf/Nanotech-2012(2).pdf

  36. Mulyukin AL, Suzina NE, Pogorelova AYu, Antonyuk LP, Duda VI, El’-Registan GI (2009) Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense. Microbiology (Moscow) 78:33–41

  37. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  38. Peng D, Zhang J, Liu Q, Taylor EW (2007) Size effect of elemental selenium nanoparticles (nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101:1457–1463

    Article  CAS  PubMed  Google Scholar 

  39. Pogorelova AYu, Mulyukin AL, Antonyuk LP, Galchenko VF, El’-Registan GI (2009) Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: association with dormancy and characteristics of the variants. Microbiology (Moscow) 78(5):559–568

  40. Rauschenbach I, Yee N, Häggblom MM, Bini E (2011) Energy metabolism and multiple respiratory pathways revealed by genome sequencing of Desulfurispirillum indicum strain S5. Environ Microbiol 13(6):1611–1621

    Article  CAS  PubMed  Google Scholar 

  41. Riedel GF, Sanders JG, Gilmour CC (1996) Uptake, transformation, and impact of selenium in freshwater phytoplankton and bacterioplankton communities. Aquat Microb Ecol 11(1):43–51

    Article  Google Scholar 

  42. Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Coves J (2001) Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 67(2):769–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sabaty M, Avazeri C, Pignol D, Vermeglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol 67(11):5122–5126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sarret G, Avoscan L, Carrière M, Collins R, Geoffroy N, Carrot F, Covès J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microbiol 71(5):2331–2337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25:159–179

    Google Scholar 

  46. Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res 96(1):49–52

    Article  Google Scholar 

  47. Simon L, Biró B, Balázsy S, Győri Z (2008) Rhizosphere processes in the selenium accumulation of fodder radish. Sereal Res Commun 36(Suppl):1811–1814. http://www.akademiai.com/content/074301116x42787w/?p=f0fbc94f56e940ceb997872545ea741b&pi=2

  48. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  49. Stolz JF, Oremland RS (1999) Bacterial respiration of selenium and arsenic. FEMS Microbiol Rev 23:615–627

    Article  CAS  PubMed  Google Scholar 

  50. Tugarova AV, Burov AM, Burashnikova MM, Kamnev AA (2014) Gold(III) reduction by the rhizobacterium Azospirillum brasilense with the formation of gold nanoparticles. Microb Ecol 67(1):155–160. doi:10.1007/s00248-013-0329-6

  51. Weiss KF, Ayres JC, Kraft AA (1965) Inhibitory action of selenite on Escherichia coli, Proteus vulgaris, and Salmonella thompson. J Bacteriol 90(4):857–862

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Williams KH, Wilkins MJ, N’Guessan AL, Arey B, Dodova E, Dohnalkova A, Holmes D, Lovley DR, Long PE (2013) Field evidence of selenium bioreduction in a uranium‐contaminated aquifer. Environ Microbiol Rep 5(3):444–452. doi:10.1111/1758-2229.12032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. A.G. Shchelochkov and V.F. Kurskii (Saratov, Russia) for their help in carrying out the X-ray fluorescence analyses. This work was supported in part under the Agreement on Scientific Cooperation between the Russian and Hungarian Academies of Sciences for 2011–2013 (Project 29).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna V. Tugarova or Alexander A. Kamnev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugarova, A.V., Vetchinkina, E.P., Loshchinina, E.A. et al. Reduction of Selenite by Azospirillum brasilense with the Formation of Selenium Nanoparticles. Microb Ecol 68, 495–503 (2014). https://doi.org/10.1007/s00248-014-0429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0429-y

Keywords

Navigation