Skip to main content
Log in

Kinetic Modelling and Characterization of Microbial Community Present in a Full-Scale UASB Reactor Treating Brewery Effluent

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60–69 % of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K B) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R 2 = 0.957) which could be used for optimizing the reactor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parawira W, Kudita I, Nyandoroh MG, Zvauya R (2005) A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochem 40:593–599

    Article  CAS  Google Scholar 

  2. Appels L, Baeyens J, Degréve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781

    Article  CAS  Google Scholar 

  3. Mirzoyan N, Parnes S, Singer A, Tal Y, Sowers K, Gross A (2008) Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquaculture 279:35–41. doi:10.1016/j.aquaculture.2008.04.008

    Article  CAS  Google Scholar 

  4. Amani T, Nosrati M, Mousavi SM, Kermanshahi RK (2011) Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int J Environ Sci Tech 8:83–96

    Article  CAS  Google Scholar 

  5. Hulshoff L, Lens P, Castro S, Lettinga G (2004) Anaerobic sludge granulation. Water Res 38:1376–1389

    Article  Google Scholar 

  6. Crocetti G, Murto M, Björnsson L (2006) An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). J Microbiol Methods 65:194–201

    Article  CAS  PubMed  Google Scholar 

  7. Chulhwan P, Chunyeon L, Sangyong K, Yu C, Howard CH (2005) Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J Biosci Bioeng 100:164–167

    Article  Google Scholar 

  8. Mumme J, Linke B, Tolle R (2010) Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 101:592–599

    Article  CAS  PubMed  Google Scholar 

  9. Batstone DJ, Keller J, Blackall LL (2004) The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Res 38:1390–1404

    Article  CAS  PubMed  Google Scholar 

  10. Yu Y, Lee C, Hwang S (2004) Analysis of community structure in anaerobic processes using a quantitative real-time PCR method. Proceedings of the 10th Anaerobic Digestion Conference, Montréal, Canada., pp. 459-465

  11. Liu WT, Chan OC, Fang HHP (2002) Microbial community dynamics during start-up of acidogenic reactors. Water Res 36:3203–3210

    Article  CAS  PubMed  Google Scholar 

  12. Ziganshin A, Schmidt T, Scholwin F, Il’inskaya O, Harms H, Kleinsteuber S (2011) Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol 89:2039–2052. doi:10.1007/s00253-010-2981-9

    Article  CAS  PubMed  Google Scholar 

  13. Keyser M, Witthuhn RC, Lamprecht C, Coetzee MPA, Britz TJ (2006) PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst Appl Microbiol 29:77–84. doi:10.1016/j.syapm.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  14. Diaz EE, Stams AJM, Amils R, Sanz JL (2006) Phenotyic properties and microbial diversity of methanogenic granules from a full scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Env Microbiol 72:4942–4949

    Article  CAS  Google Scholar 

  15. McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Biotechnol 2:225–245

    Article  CAS  Google Scholar 

  16. Zhang L, Sun Y, Guo D, Wu Z, Jiang D (2012) Molecular diversity of bacterial community of dye wastewater in an anaerobic sequencing batch reactor. Afr J Microbiol Res 6444–6453

  17. Pontes RFF, Pinto JM (2006) Analysis of integrated kinetic and flow models for anaerobic digesters. Chem Eng J 122:65–80. doi:10.1016/j.cej.2006.02.018

    Article  CAS  Google Scholar 

  18. Acharya BK, Mohana S, Madamwar D (2008) Anaerobic treatment of distillery spent wash-A study on upflow anaerobic fixed film bioreactor. Bioresour Technol 99:4621–4626

    Article  CAS  PubMed  Google Scholar 

  19. Yetilmezsoy K (2012) Integration of kinetic modeling and desirability function approach for multi-objective optimization of UASB reactor treating poultry manure wastewater. Bioresour Technol 118(118):189–101

    Google Scholar 

  20. Batstone D, Keller J, Angelidaki I, Kalyhuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA Anaerobic Digestion Model No.1 (ADM1). Water Sci Technol 45:65–73

    CAS  PubMed  Google Scholar 

  21. Parsamehr M (2012) Modeling and analysis of a UASB reactor. Luleå University of Technology

  22. Yetilmezsoy K, Sakar S (2008) Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions. J Hazard Mater 153:532–543. doi:10.1016/j.jhazmat.2007.08.087

    Article  CAS  PubMed  Google Scholar 

  23. Debik E, Coskun T (2009) Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modelling. Bioresour Technol 100:2777–2782

    Article  CAS  PubMed  Google Scholar 

  24. Acharya BK, Pathak H, Mohan S, Shouche Y, Singh V, Madamwar D (2011) Kinetic modelling and microbial community assessment of anaerobic biphasic fixed film bioreactor treating distillery spent wash. Water Res 45:4248–4259

    Article  CAS  PubMed  Google Scholar 

  25. Turkdogan-Aydinol FI, Yetilmezsoy K (2010) A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. J Hazard Mater 182:460–471. doi:10.1016/j.jhazmat.2010.06.054

    Article  CAS  PubMed  Google Scholar 

  26. APHA–AWWA–WPCF (1998) Standard methods for the examination of water and wastewater. 20th ed. Washington, DC, USA. American Public Health Association/American Water Works Association/Water Environment Federation

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16 s rRNA gene analysis. Microbiology 144:2655–2665

    Article  CAS  PubMed  Google Scholar 

  30. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kincannon DF, Stover EL (1982) Design methodology for fixed film reaction—RBCs and biological towers. Pergamon, New York

    Google Scholar 

  33. Krzysztof Z, Frac M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11:4127

    Google Scholar 

  34. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Kovacik WP, Scholten JCM, Culley D, Hickey R, Zhang W, Brockman FJ (2010) Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. Microbiology 156:2418–2427. doi:10.1099/mic.0.036715-0

    Article  CAS  PubMed  Google Scholar 

  36. Jupraputtasri W, Boonapatcharoen N, Cheevadhanarak S, Chaiprasert P, Tanticharoen M, Techkarnjanaruk S (2005) Use of an alternative Archaea-specific probe for methanogen detection. J Microbiol Methods 61:95–104. doi:10.1016/j.mimet.2004.11.017

    Article  CAS  PubMed  Google Scholar 

  37. Raskin L, Stromley JM, Rittmann BE, Stah DA (1994) Group specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H (2001) In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749. doi:10.1128/aem.67.12.5740-5749.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gomec CY, Letsiou I, Ozturk I, Eroglu V, Wilderer PA (2008) Identification of Archaeal population in the granular sludge of an UASB reactor treating sewage at low temperatures. J Environ Sci Health Part A 43:1504–1510

    Article  CAS  Google Scholar 

  40. Vavilin VA, Qu X, Mazeas L, Lemunier M, Duquennoi C, He P, Bouchez T (2008) Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek 94:593–605. doi:10.1007/s10482-008-9279-2

    Article  CAS  PubMed  Google Scholar 

  41. Castro H, Ogram A, Reddy KR (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida everglades. Appl Environ Microbiol 70:6559–6568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cardinali-Rezende J, Debarry R, Colturato LDB, Carneiro E, Chartone-Souza E, Nascimento AA (2009) Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl Microbiol Biotechnol 84:777–789. doi:10.1007/s00253-009-2071-z

    Article  CAS  PubMed  Google Scholar 

  43. Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov, a novel hydrogenotrophic methanogen from Shengli Oilfields. Appl Environ Microbiol 77:5212–5219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54:759–763

    Article  CAS  PubMed  Google Scholar 

  45. Kampmann K, Ratering S, Baumann R, Schmidt M, Zerr W, Schnell S (2012) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413

    Article  CAS  PubMed  Google Scholar 

  46. Smith JM, Castro H, Ogram A (2007) Structure and function of methanogens along a short-term restoration chronosequence in the Florida Everglades [down-pointing small open triangle. Appl Environ Microbiol 73:4135–4141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141. doi:10.1128/AEM.00489-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ferry J (1993) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman & Hill, New York

    Book  Google Scholar 

  49. McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II. Microbial population dynamics. Water Res 35:1817–1827. doi:10.1016/S0043-1354(00)00438-3

    Article  CAS  PubMed  Google Scholar 

  50. Delbès C, Moletta R, Godon J-J (2001) Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digester ecosystem. FEMS Microbiol Ecol 35:19–26

    Article  PubMed  Google Scholar 

  51. Wikström T, Nordmark D, Pelkonen M, Lagerkvist A (2012) Fluorescent in situ hybridization technique in anaerobic process studies. In: Lagerkvist A (ed) Abstract proceedings of 7th Intercontinental Landfill Research Symposium. Luleå Tekniska Universitet, Sunderbyn, Luleå, Sweden

    Google Scholar 

  52. Pandian M, H-H NGO, Pazhaniappan S (2011) Substrate removal kinetics of an anaerobic hybrid reactor treating pharmaceutical wastewater. J Water Sustain 1:301–312

    CAS  Google Scholar 

  53. Kapdan IK, Erten B (2007) Anaerobic treatment of saline wastewater by Halanaerobium lacurosei. Process Biochem 42:449–453

    Article  CAS  Google Scholar 

  54. Ahn JH, Forster CF (2000) Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater. Process Biochem 36:19–23

    Article  CAS  Google Scholar 

  55. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, vol 8. Wiley, London, England, pp 207–248

    Google Scholar 

  56. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Daims H, Bruhl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  58. Sponza D, Uluköy A (2008) Kinetic of carbonaceous substrate in an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP). J Environ Manag 86:121–131

    Article  CAS  Google Scholar 

  59. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge South African Breweries (SAB) for their continuous support for this study and the Durban University of Technology for the financial and laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abimbola M. Enitan or Sheena Kumari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enitan, A.M., Kumari, S., Swalaha, F.M. et al. Kinetic Modelling and Characterization of Microbial Community Present in a Full-Scale UASB Reactor Treating Brewery Effluent. Microb Ecol 67, 358–368 (2014). https://doi.org/10.1007/s00248-013-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0333-x

Keywords

Navigation