Skip to main content

Advertisement

Log in

Dynamics of Vibrio with Virulence Genes Detected in Pacific Harbor Seals (Phoca vitulina richardii) Off California: Implications for Marine Mammal Health

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n = 319) compared with stranded seals (17 %, n = 189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abuaita BH, Withey JH (2009) Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 77(9):4111–4120

    Article  PubMed  CAS  Google Scholar 

  2. Allen S (1988) Movement and activity patterns of harbor seals at Point Reyes Peninsula, California. Master’s Thesis, University of California Berkeley

  3. Allen SG, Huber HR, Ribic CA et al (1989) Population dynamics of harbor seals in the Gulf of the Farallones, California. Calif Fish Game 75(4):224–232

    Google Scholar 

  4. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  PubMed  CAS  Google Scholar 

  5. Barry S, King WLS (2010) Opportunities to sustain “ greener ” farming: comparing impacts of water quality regulations in two catchments: Lake Taupo ( NZ ) and Tomales Bay, California (USA). ProcN Z Grassl Assoc 72:17–22

    Google Scholar 

  6. Bauer A, Rørvik LM (2007) A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Lett Appl Microbiol 45:371–375

    Article  PubMed  CAS  Google Scholar 

  7. Belkin S, Colwell R (2006) Oceans and health: pathogens in the marine environment. Springer, New York

    Google Scholar 

  8. Bej AK, Patterson DP, Brasher CW et al (1999) Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods 36:215–225

    Article  PubMed  CAS  Google Scholar 

  9. Bigg MA (1969) The harbor seal in British Columbia. Bull Fish Res Board Can 172:33

    Google Scholar 

  10. Bogomolni A, Gast RJ, Ellis JC et al (2008) Victims or vectors: a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic. Dis Aquat Org 81:13–38

    Article  PubMed  Google Scholar 

  11. Bossart GD (2011) Marine mammals as sentinel species for oceans and human health. Vet Pathol 48:676–690

    Article  PubMed  CAS  Google Scholar 

  12. Brookens TJ, Harvey JT, O’Hara TM (2007) Trace element concentrations in the Pacific harbor seal (Phoca vitulina richardii) in central and northern California. Sci Total Environ 372:676–692

    Article  PubMed  CAS  Google Scholar 

  13. Burek KA, Gulland FMD, O’Hara TM (2008) Effects of climate change on Arctic marine mammal health. Ecol Appl 18:S126–S134

    Article  PubMed  Google Scholar 

  14. Caffrey J, Zabin C, Silberstein M et al (2002) Introduction. In: Caffrey J, Brown M, Tyler WB et al (eds) Changes in a California estuary: a profile of Elkhorn Slough. Elkhorn Slough Foundation, Moss Landing, pp 1–14

    Google Scholar 

  15. Caffery J, Broenkaw W (2002) Hydrography. In: Caffrey J, Brown M, Tyler WB et al (eds) Changes in a California estuary: a profile of Elkhorn Slough. Elkhorn Slough Foundation, Moss Landing, pp 29–42

    Google Scholar 

  16. Colegrove KM, Greig DJ, Gulland FMD (2005) Causes of live strandings of northern elephant seals (Mirounga angustirostris) and Pacific harbor seals (Phoca vitulina) along the central California coast, 1992–2001. Aquat Mamm 31:1–10

    Article  Google Scholar 

  17. Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031

    Article  PubMed  CAS  Google Scholar 

  18. Colwell RR (2006) A global and historical perspective of the genus Vibrio. In: Thompson FL, Austin B, Swings J (eds) The biology of Vibrios. ASM Press, Washington, DC, pp 3–11

    Google Scholar 

  19. Deter J, Solen L, Antoine V et al (2010) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environ Microbiol 12:929–937

    Article  Google Scholar 

  20. DePaola A, Capers GM, Alexander D (1994) Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl Environ Microbiol 60(3):984–988

    PubMed  CAS  Google Scholar 

  21. DePaola A, Ulaszek J, Kaysner CA (2003) Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food and clinical sources in North America and Asia. Appl Environ Microbiol 69(7):3999–4005

    Article  PubMed  CAS  Google Scholar 

  22. DiRita VJ, Engleberg C, Heath A et al (2000) Virulence gene regulation inside and outside. Philos Trans R Soc Lond B Bio Sci 355:657–665

    Article  CAS  Google Scholar 

  23. Eguchi T, Harvey JT (2005) Diving behavior of the Pacific harbor seal (Phoca vitulina richardii) in Monterey Bay, California. Mar Mamm Sci 21(2):283–295

    Article  Google Scholar 

  24. Faruque SM, Nair GB (2006) Epidemiology. In: Thompson FL, Austin B, Swings J (eds) The biology of Vibrios. ASM Press, Washington DC

    Google Scholar 

  25. Field IC, Bradshaw CJA, Hoff J et al (2006) Age-related shifts in the diet composition of southern elephant seals expand overall foraging niche. Mar Biol 150:1441–1452

    Article  Google Scholar 

  26. Ford TE (2000) Response of marine microbial communities to anthropogenic stress. J Aquat Ecosyst Stress Recover 7:75–89

    Article  CAS  Google Scholar 

  27. Fries JS, Characklis GW, Noble RT (2008) Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Water Res 42:941–950

    Article  PubMed  CAS  Google Scholar 

  28. Gibble C (2011) Food habits of Pacific harbor seals (Phoca vitulina richardii) in San Francisco Bay, California. Master’s Thesis, Moss Landing Marine Laboratories, San Jose State University

  29. Gilliss D, Cronquist A, Cartter M et al. (2010) Morbidity and mortality weekly report. FoodNet, CDC. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6022a5.htm?s_cid=mm6022a5_w. Accessed 30 June 2011

  30. Greig DJ (2002) Pregnancy and parturition of harbor seals in Monterey Bay, California. Master’s Thesis, Moss Landing Marine Laboratories, San Jose State University

  31. Greig DJ, Gulland FMD, Rios CA, Hall AJ (2010) Hematology and serum chemistry in stranded and wild-caught harbor seals in central California: reference intervals, predictors of survival, and parameters affecting blood variables. J Wildl Dis 46:1172–1184

    PubMed  CAS  Google Scholar 

  32. Greig DJ (2011) Health, disease, mortality and survival in wild and rehabilitated harbor seals (Phoca vitulina) in San Francisco Bay and along the central California coast. Dissertation, University of St. Andrews, UK http://research-repository.st-andrews.ac.uk/handle/10023/1885

  33. Greig DJ, Ylitalo GM, Wheeler EA et al (2011) Geography and stage of development affect persistent organic pollutants in stranded and wild-caught harbor seal pups from central California. Sci Total Environ 409:3537–3547

    Article  PubMed  CAS  Google Scholar 

  34. Grimes DJ, Johnson CN, Dillon KS et al (2009) What genomic sequence information has revealed about Vibrio ecology in the ocean-a review. Microb Ecol 58:447–460

    Article  PubMed  CAS  Google Scholar 

  35. Gulland FMD, Hall AJ (2007) Is marine mammal health deteriorating? Trends in the global reporting of marine mammal disease. EcoHealth 4:135–150

    Article  Google Scholar 

  36. Hall AJ, Frame E (2010) Evidence of domoic acid exposure in harbour seals from Scotland: a potential factor in the decline in abundance? Harmful Algae 9:489–493

    Article  CAS  Google Scholar 

  37. Hanni KD, Mazet JAK, Gulland FMD et al (2003) Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters. J Wildl Dis 39:837–850

    PubMed  Google Scholar 

  38. Härkönen T, Dietz R, Reijnders P et al (2006) The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis Aquat Org 68:115–130

    Article  PubMed  Google Scholar 

  39. Harvell CD, Mitchell CE, Wad JR et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  PubMed  CAS  Google Scholar 

  40. Hashizume M, Faruque ASG, Wagatsuma Y et al (2010) Cholera in Bangladesh: climatic components of seasonal variation. Epidemiology 21(5):706–710

    Article  PubMed  Google Scholar 

  41. Hollibaugh JT, Wong PS (1996) Distribution and activity of bacterioplankton in San Francisco Bay. In: Hollibaugh JT (ed) San Francisco Bay the ecosystem; further investigations into the natural history of San Francisco Bay and delta with reference to the influence of man. Pacific Division of the American Association for the Advancement of Science, San Francisco, pp 263–288

    Google Scholar 

  42. Hollibaugh JT, Wong PS (1999) Microbial processes in the San Francisco Bay estuarian turbidity maximum. Estuaries 22(4):848–862

    Article  CAS  Google Scholar 

  43. Hsieh JL, Fries JS, Noble RT (2008) Dynamics and predictive modelling of Vibrio spp. in the Neuse River Estuary, North Carolina, USA. Environ Microbiol 10:57–64

    PubMed  Google Scholar 

  44. Hove-Musekwa SD, Nyabadza F, Chiyaka C et al (2011) Modelling and analysis of the effects of malnutrition in the spread of cholera. Math Comput Model 53:1583–1595

    Article  Google Scholar 

  45. Kaneko T, Colwell RR (1973) Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J Bacteriol 113:24–32

    PubMed  CAS  Google Scholar 

  46. Keasler SP, Hall RH (1993) Detecting and biotyping Vibrio cholerae O1 with multiplex polymerase chain reaction. Lancet 341:1661

    Article  PubMed  CAS  Google Scholar 

  47. Kirkup BC, Chang L, Chang S et al (2010) Vibrio chromosomes share common history. BMC Microbiol 10:137

    Article  PubMed  Google Scholar 

  48. Knap A, Dewailly É, Furgal C, Galvin J et al (2002) Indicators of ocean health and human health: developing a research and monitoring framework. Environ Heal Perspect 110:839–845

    Article  CAS  Google Scholar 

  49. Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    Article  PubMed  Google Scholar 

  50. Lander ME (1998) Success of free-ranging and rehabilitated harbors seal (Phoca vitulina richardii) pups in the wild. Master’s Thesis. Moss Landing Marine Laboratories, San Francisco State University

  51. Laws EA, Fleming LE, Stegeman JJ (2008) Centers for Oceans and Human Health: contributions to an emerging discipline. Environmental Health 7 Supplement

  52. Lipp EK, Huq A, Colwell RR (2002) Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 15:757–770

    Article  PubMed  Google Scholar 

  53. Loveren VH, Ross PS, Osterhaus AD, Vos JG (2000) Contaminant-induced immunosuppression and mass mortalities among harbor seals. Toxicol Lett 112–113:319–324

    Article  PubMed  Google Scholar 

  54. Lowry LF, Frost KJ, Ver Hoef JM et al (2001) Movements of satellite-tagged subadult and adult harbor seals in Prince William Sound, Alaska. Mar Mamm Sci 17:835–861

    Article  Google Scholar 

  55. Martinez-Urtaza J, Blanco-Abad V, Rodriguez-Castro A et al (2012) Ecological determinants of the occurrence and dynamics of Vibrio parahaemolyticus in offshore areas. ISME J 6(5):994–1006

    Article  PubMed  CAS  Google Scholar 

  56. Medici DD, Croci L, Delibato E et al (2003) Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl Environ Microbiol 69:3456–3461

    Article  PubMed  Google Scholar 

  57. Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7

    PubMed  CAS  Google Scholar 

  58. Miller MA, Byrne BA, Jang SS et al (2010) Enteric bacterial pathogen detection in southern sea otters (Enhydra lutri nereis) is associated with coastal urbanization and freshwater run-off. Vet Res 41:1–13

    Article  PubMed  Google Scholar 

  59. Miller WA, Miller MA, Gardner IA et al (2006) Salmonella spp., Vibrio spp. Clostridium perfringens, and Plesiomonas shigelloides in marine and freshwater invertebrates from coastal California ecosystems. Microb Ecol 52(2):198–206

    Article  PubMed  CAS  Google Scholar 

  60. Moore S (2008) Marine mammals as ecosystem sentinels. J Mammal 89:534–540

    Article  Google Scholar 

  61. Neale JCC, Van de Water JA, Harvey JT, Tjeerdema RS, Gershwin ME (2002) Proliferative responses of harbor seal (Phoca vitulina) T lymphocytes to model marine pollutants. Dev Immunol 9:215–221

    Article  PubMed  CAS  Google Scholar 

  62. Nickel B (2003) Movement and habitat use patterns of harbor seals in the San Francisco estuary, California. Master’s Thesis, Moss Landing Marine Laboratories, San Francisco State University

  63. Nigro OD, Hou A, Vithanage G, Fujioka RS, Steward GF (2011) Temporal and spatial variability in culturable pathogenic Vibrio spp. in Lake Pontchartrain, Louisiana, following hurricanes Katrina and Rita. Appl Environ Microbiol 77:5384–5393

    Article  PubMed  CAS  Google Scholar 

  64. Oates S (2005) Survival, movements, and diet of juvenile harbor seals along central California. Master’s Thesis, Moss Landing Marine Laboratories, San Jose State University

  65. Oates SC, Miller MA, Byrne BA et al (2012) Epidemiology and potential land-sea transfer of enteric bacteria from terrestrial to marine species in the Monterey Bay region of California. J Wildl Dis 48(3):654–668

    PubMed  Google Scholar 

  66. Ottaviani D, Leoni F, Rocchegiani AM et al (2012) An extensive investigation into the prevalence and the genetic and serological diversity of toxigenic Vibrio parahaemolyticus in Italian marine coastal waters. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02839.x

  67. Oxman D (1995) Seasonal abundance, movements, and food habits of harbor seals (Phoca vitulina richardii) in Elkhorn Slough, California. Master’s Thesis, Moss Landing Marine Laboratories, California State University, Fresno

  68. Peng CYJ, Lee KL, Ingersoll GM (2002) An introduction to logistic regression analysis and reporting. J Educ Res 96:3–14

    Article  Google Scholar 

  69. Perrin WF, Wursig B, Thewissen JGM (2002) Encyclopedia of marine mammals. Elsevier, Burlington

    Google Scholar 

  70. Phillips B, Stephenson M, Jacobi M et al (2002) Land use and contaminants. In: Caffrey J, Brown M, Tyler WB et al (eds) Changes in a California estuary; a profile of Elkhorn Slough. Elkhorn Slough Foundation, Moss Landing, pp 237–256

    Google Scholar 

  71. Prewitt JS, Freistroffer DV, Schreer JF, Hammill MO, Burns JM (2010) Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: limitations to diving behavior? J Comp Physiol B 180:757–766

    Article  PubMed  CAS  Google Scholar 

  72. Rice DW, Seltenrich CP, Spies RB, Keller ML (1993) Seasonal and annual distribution of organic contaminants in marine sediments from Elkhorn slough, moss landing harbor and nearshore Monterey Bay, California. Environ Pollut 82:79–91

    Article  PubMed  CAS  Google Scholar 

  73. Rose JM, Gast RJ, Bogolmoni A et al (2009) Occurrence and patterns of antibiotic resistance in vertebrates off the Northeastern United States coast. FEMS Microbiol Ecol 67:421–431

    Article  PubMed  CAS  Google Scholar 

  74. Scott TM, Rose JB, Jenkins TM, Farrah SR (2002) Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68:5796–5803

    Article  PubMed  CAS  Google Scholar 

  75. Sedas VTP (2007) Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: a climate link. J Infect Dev Countries 1:224–241

    Google Scholar 

  76. Senderovich Y, Izhaki I, Halpern M (2010) Fish as reservoirs and vectors of Vibrio cholerae. PLoS One 5(1):e8607

    Article  PubMed  Google Scholar 

  77. Shangkuan YH, Show YS, Wang TM (1995) Multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae and to biotype Vibrio cholerae O1. J Appl Bacteriol 79:264–273

    Article  PubMed  CAS  Google Scholar 

  78. Stewart JR, Gast RJ, Fujioka RS, Solo-Gabriele HS et al (2008) The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ Heal 7(S2):S3

    Article  Google Scholar 

  79. Sung H, Chang C, Lan S (2004) Effects of salinity and pH on the adherence and virulence of Vibrio cholerae O139. J Food Drug Anal 12(1):68–73

    Google Scholar 

  80. Sun-Hee A, Han JH, Lee JH et al (2005) Identification of an iron-regulated hemin-binding outer membrane protein, HupO, in V. fluvialis: effects on hemolytic acitivy and the oxidative stress response. Infect Immun 73(2):722–729

    Article  Google Scholar 

  81. Tao Z, Bullard S, Arias C (2011) High numbers of Vibrio vulnificus in tar balls collected from oiled areas of the north-central Gulf of Mexico following the 2010 BP Deepwater Horizon Oil Spill. EcoHealth. doi:10.1007/s10393-011-0720-z

  82. Thompson B, Adelsbach T, Brown C et al (2007) Biological effects of anthropogenic contaminants in the San Francisco Estuary. Environ Res 105:156–174

    Article  PubMed  CAS  Google Scholar 

  83. Thornton SM, Nolan S, Gulland FMD (1998) Bacterial Isolates from California sea lions (Zalophus californianus), Pacific harbor seals (Phoca vitulina) and elephant seals admitted to a rehabilitation center along the central California coast. J Zoo Wildl Med 29(2):171–178

    PubMed  CAS  Google Scholar 

  84. Torok M (1994) Movements, daily activity patterns, dive behavior, and food habits of harbor seals (Phoca vitulina richardii) in San Francisco Bay, California. Master’s Thesis, Moss Landing Marine Laboratories, San Jose State University

  85. Trumble S (1995) Abundance, movements, dive behavior, food habits, and mother-pup interactions of harbor seals near Monterey Bay, California. Master’s Thesis, Moss Landing Marine Laboratories, California State University, Fresno

  86. Turner JW, Good B, Cole D, Lipp EK (2009) Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J 3:1082–1092

    Article  PubMed  CAS  Google Scholar 

  87. Whitaker WB, Parent MA, Naughton LM et al (2010) Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Appl Environ Microbiol 76:4720–4729

    Article  PubMed  CAS  Google Scholar 

  88. Woolhouse M (2011) How to make predictions about future infectious disease risks. Philos Trans R Soc Lond B 366:2045–2054

    Article  Google Scholar 

  89. Wright AC, Simpson LM, Oliver JD (1981) Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun 34(2):503

    PubMed  CAS  Google Scholar 

  90. Xavier MN, Paixão TA, Hartigh ABD, Tsolis RM, Santos RL (2010) Pathogenesis of Brucella spp. Open Vet Sci J 4:109–118

    CAS  Google Scholar 

  91. Yochem PK, Stewart BS, DeLong RL, DeMaster DP (1987) Diel haul-out patterns and site fidelity of harbor seals (Phoca vitulina richardsi) on San Miguel Island, California, in Autumn. Mar Mamm Sci 3:323–332

    Article  Google Scholar 

  92. Zarnke RL, Saliki JT, Macmillan AP et al (2006) Serologic survey for Brucella spp., phocid herpesvirus-1, phocid herpesvirus-2, and phocine distemper virus in harbor seals from Alaska, 1976–1999. J Wildl Dis 42:290–300

    PubMed  Google Scholar 

  93. Zo YG, Chokesajjawatee N, Arawaka E et al (2008) Covariability of Vibrio cholerae microdiversity and environmental parameters. Appl Environ Microbiol 74:2915–2920

    Article  PubMed  CAS  Google Scholar 

  94. NOAA (2012) NOAA’s National Estuarine Research Reserve System National Monitoring Program. Centralized Data Management Office, http://cdmo.baruch.sc.edu/. Accessed February 2012

Download references

Acknowledgments

Samples were collected under permits issued by NMFS (nos. 555–1870 and 373–1868), USFWS (nos. 81640-2009-041 and 81640-2011-002, Don Edwards, and 81590-10007, Humboldt Bay), NPS (PORE-2011-SCI-0003) and IACUC protocol no. 948 issued by San Jose State University. Samples from stranded seals were collected under the Stranding Agreement between The Marine Mammal Center (TMMC) and NMFS under section 112 (c) of the Marine Mammal Protection Act. We thank staff and volunteers from TMMC, Moss Landing Marine Laboratories, Long Marine Laboratories, Don Edwards National Wildlife Refuge, Humboldt Bay NWR Complex, the USFWS, and University of California, Davis Veterinary Medical Teaching Hospital Microbiology. This project would not have been possible without their efforts and support. Financial support was provided by TMMC, Earl and Ethyl Myers Oceanographic and Marine Biology Trust, CSU-COAST Marine Science Research Award, and the Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie N. Hughes.

Appendices

Appendix A

Table 5 Descriptive statistics, and bin criteria used for categorizing environmental predictor variables to be used in multivariable logistic regression analysis for SFB, from 2007 to 2011. Presence and absence of Vibrio were tested between categories for each predictor using a Pearson’s chi-squared test, and associated P values are reported

Appendix B

Table 6 Descriptive statistics, and bin criteria used for categorizing environmental predictor variables to be used in multivariable logistic regression analysis for ES in 2010. Presence and absence of Vibrio were tested between categories for each predictor using a Pearson’s chi-squared test, and associated p values are reported

Appendix C

Table 7 Sequence confirmation for target genes for a subset of isolates collected from harbor seals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, S.N., Greig, D.J., Miller, W.A. et al. Dynamics of Vibrio with Virulence Genes Detected in Pacific Harbor Seals (Phoca vitulina richardii) Off California: Implications for Marine Mammal Health. Microb Ecol 65, 982–994 (2013). https://doi.org/10.1007/s00248-013-0188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0188-1

Keywords

Navigation