Skip to main content
Log in

Molecular Characterization of Wolbachia Strains Associated with the Invasive Asian Citrus Psyllid Diaphorina citri in Brazil

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Wolbachia is a symbiont intensively studied due to its ability to interfere with their host’s reproduction, and it has been recently proposed as an alternative tool to control insect pests or vectors of diseases. The Asian citrus psyllid Diaphorina citri is an important pest of citrus since it vectors the bacterium that causes the "Huanglongbing" disease in citrus. The frequency and diversity of Wolbachia associated with D. citri is unknown, limiting the utilization of Wolbachia as an alternative strategy for insect management. Thus, we aimed to determine the natural rate of infection, to characterize the Wolbachia strains associated with this psyllid by "multilocus sequencing typing” (MLST) and wsp analysis, and to verify the association of the symbiont to particular genotypes of the host. Analysis indicated Wolbachia infects 100 % of all specimens tested from all 15 sampled populations. MLST revealed the occurrence of five new sequence types (STs) of Wolbachia, while analysis based on the wsp sequences indicated only four different types of Wolbachia. ST-173 was predominant, while the remaining STs were population specific. Analysis of the host–symbiont relationship did not reveal any particular association of Wolbachia and haplotypes or a decrease in nucleotide diversity of D. citri in populations in which more than one ST was recorded. The consequences of the diversity of STs reported are still unknown, but the fact that Wolbachia infection is fixed and that there is one ST with a broad distribution highlights the use of this symbiont as an alternative strategy to control D. citri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Aksoy S, Weiss B, Attardo G (2008) Paratransgenesis applied for the control of tsetse transmitted sleeping sickness. Advances in Experimental and Medical Biology 627:35–48

    Article  CAS  Google Scholar 

  2. Ammar ED, Shatters RG, Lynch C, Hall DG (2012) Detection and relative titer of Candidatus liberibacter asiaticus in the salivary glands and alimentary canal of Diaphorina citri (Hemiptera: psyllidae) vector of Citrus Huanglongbing disease. Annals of the Entomological Society of America 104:526–533

    Article  Google Scholar 

  3. Anderson CL, Karr TL (2001) Wolbachia: evolutionary novelty in a rickettsial bacteria. BMC Evolutionary Biology 1

  4. Arthofer W, Riegler M, Avtzis DN, Stauffer C (2009) Evidence for low-titre infections in insect symbiosis: wolbachia in the bark beetle Pityogenes chalcographus (Coleoptera, Scolytinae). Environ Microbiol 11:1923–1933

    Article  Google Scholar 

  5. Arthofer W, Riegler M, Schneider D, Krammer M, Miller WJ, Stauffer C (2009) Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Mol Ecol 18:3816–3830

    Article  PubMed  Google Scholar 

  6. Arthofer W, Riegler M, Schuler H, Schneider D, Moder K, Miller WJ, Stauffer C (2011) Allele Intersection Analysis: A novel tool for multi locus sequence assignment in multiply infected hosts. Plos One 6

  7. Atyame CM, Duron O, Tortosa P, Pasteur N, Fort P, Weill M (2011) Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Mol Ecol 20:286–298

    Article  PubMed  Google Scholar 

  8. Baldo L, Lo N, Werren JH (2005) Mosaic nature of the Wolbachia surface protein. J Bacteriol 187:5406–5418

    Article  PubMed  CAS  Google Scholar 

  9. Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

    Article  PubMed  CAS  Google Scholar 

  10. Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Management Science 67:886–890

    Article  PubMed  CAS  Google Scholar 

  11. Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  PubMed  CAS  Google Scholar 

  12. Benlarbi M, Ready PD (2003) Host-specific Wolbachia strains in widespread populations of Phlebotomus perniciosus and P. papatasi (Diptera: psychodidae), and prospects for driving genes into these vectors of Leishmania. Bulletin of Entomological Research 93:383–391

    Article  PubMed  CAS  Google Scholar 

  13. Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to Dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833

    Article  PubMed  Google Scholar 

  14. Bove JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88:7–37

    Google Scholar 

  15. Braig HR, Zhou WG, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2373–2378

    PubMed  CAS  Google Scholar 

  16. Brownlie JC, Adamski M, Slatko B, McGraw EA (2007) Diversifying selection and host adaptation in two endosymbiont genomes. BMC Evol Biol 7:12

    Article  Google Scholar 

  17. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Wiley, Hoboken

    Google Scholar 

  18. Chafee ME, Funk DJ, Harrison RG, Bordenstein SR (2010) Lateral phage transfer in obligate intracellular bacteria (Wolbachia): verification from natural populations. Mol Biol Evol 27:501–505

    Article  PubMed  CAS  Google Scholar 

  19. Charlat S, Duplouy A, Hornett EA, Dyson EA, Davies N, Roderick GK, Wedell N, Hurst GDD (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol Biol 9:64

    Article  PubMed  Google Scholar 

  20. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  21. Coutinho-Abreu I, Zhu KY, Ramalho-Ortigao M (2010) Transgenesis and paratransgenesis to control insect-borne diseases and future challenges. Parasitoly International 59:1–8

    Article  CAS  Google Scholar 

  22. Curtis CF, Sinkins SP (1998) Wolbachia as a possible means of driving genes into populations. Parasitology 116:S111–S115

    Article  PubMed  Google Scholar 

  23. Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci U S A 98:6247–6252

    Article  PubMed  CAS  Google Scholar 

  24. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  25. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 94:3274–3278

    Article  PubMed  CAS  Google Scholar 

  26. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Taneja J, Kang AS (1999) Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Medical and Veterinary Entomology 13:115–119

    Article  PubMed  CAS  Google Scholar 

  27. Engelstadter J, Hammerstein P, Hurst GDD (2007) The evolution of endosymbiont density in doubly infected host species. J Evol Biol 20:685–695

    Article  PubMed  CAS  Google Scholar 

  28. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8:186–194

    PubMed  CAS  Google Scholar 

  29. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 8:175–185

    PubMed  CAS  Google Scholar 

  30. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  31. Godfray HCJ (2010) An insect-endosymbiont conundrum. Heredity 104:237–238

    Article  PubMed  CAS  Google Scholar 

  32. Guidolin AS (2011) Diversidade genética de Diaphorina citri Kuwayama, 1908 (Hemiptera: Psyllidae) e caracterização molecular das linhagens de Wolbachia associadas. Dissertation, University of São Paulo—Escola Superior de Agricultura "Luiz de Queiroz.

  33. Harris HL, Brennan LJ, Keddie BA, Braig HR (2010) Bacterial symbionts in insects: balancing life and death. Symbiosis 51:37–53

    Article  Google Scholar 

  34. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  PubMed  CAS  Google Scholar 

  35. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457

    Article  PubMed  CAS  Google Scholar 

  36. Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769–774

    Article  PubMed  CAS  Google Scholar 

  37. Hughes GL, Ren XX, Ramirez JL, Sakamoto JM, Bailey JA, Jedlicka AE, Rasgon JL (2011) Wolbachia infections in Anopheles gambiae cells: Transcriptomic characterization of a novel host-symbiont interaction. Plos Pathogens 7

  38. Hurst GDD, Jiggins FM, von der Schulenburg JHG, Bertrand D, West SA, Goriacheva II, Zakharov IA, Werren JH, Stouthamer R, Majerus MEN (1999) Male-killing Wolbachia in two species of insect. Proc R Soc London, Ser B 266:735–740

    Article  Google Scholar 

  39. Inoue H, Ohnishi J, Ito T, Tomimura K, Miyata S, Iwanami T, Ashihara W (2009) Enhanced proliferation and efficient transmission of Candidatus liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Ann Appl Biol 155:29–36

    Article  Google Scholar 

  40. Jaenike J (2009) Coupled population dynamics of endosymbionts within and between hosts. Oikos 118:353–362

    Article  Google Scholar 

  41. Jamnongluk W, Kittayapong P, Baimai V, O’Neill SL (2002) Wolbachia infections of tephritid fruit flies: molecular evidence for five distinct strains in a single host species. Curr Microbiol 45:255–260

    Article  PubMed  CAS  Google Scholar 

  42. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76 % of sixty-three arthropod species. Insect Molecular Biology 9:393–405

    Article  PubMed  CAS  Google Scholar 

  43. Kambris Z, Blagborough AM, Pinto SB, Blagrove MSC, Godfray HCJ, Sinden RE, Sinkins SP (2010) Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathogens 6(10):e1001143

    Article  PubMed  Google Scholar 

  44. Kawasaki Y, Ito M, Miura K, Kajimura H (2010) Superinfection of five Wolbachia in the alnus ambrosia beetle, Xylosandrus germanus (Blandford) (Coleoptera: curculionidae). Bulletin of Entomological Research 100:231–239

    Article  PubMed  CAS  Google Scholar 

  45. Lopes SA, Frare GF, Yamamoto PT, Ayres AJ, Barbosa JC (2007) Ineffectiveness of pruning to control citrus Huanglongbing caused by Candidatus liberibacter americanus. Eur J Plant Pathol 119:463–468

    Article  Google Scholar 

  46. Malloch G, Fenton B, Butcher RDJ (2000) Molecular evidence for multiple infections of a new subgroup of Wolbachia in the European raspberry beetle Byturus tomentosus. Mol Ecol 9:77–90

    Article  PubMed  CAS  Google Scholar 

  47. Manjunath KL, Halbert SE, Ramadugu C, Webb S, Lee RF (2008) Detection of ‘Candidatus liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida. Phytopathology 98:387–396

    Article  PubMed  CAS  Google Scholar 

  48. McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A 99:2918–2923

    Article  PubMed  CAS  Google Scholar 

  49. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144

    Article  PubMed  CAS  Google Scholar 

  50. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  51. Nunes MDS, Nolte V, Schlotterer C (2008) Nonrandom Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes. Mol Biol Evol 25:2493–2498

    Article  PubMed  CAS  Google Scholar 

  52. Ochman H, Wilson AC (1987) Evolution in bacteria—evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    Article  PubMed  CAS  Google Scholar 

  53. Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated Dengue interference. PLoS Pathog 8(2):e1002548

    Article  PubMed  Google Scholar 

  54. Reuter M, Keller L (2003) High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta. Mol Biol Evol 20:748–753

    Article  PubMed  CAS  Google Scholar 

  55. Riegler M, Sidhu M, Miller WJ, O’Neill SL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15:1428–1433

    Article  PubMed  CAS  Google Scholar 

  56. Rodriguero MS, Lanteri AA, Confalonieri VA (2010) Mito-nuclear genetic comparison in a Wolbachia infected weevil: insights on reproductive mode, infection age and evolutionary forces shaping genetic variation. BMC Evol Biol 10:340

    Article  PubMed  Google Scholar 

  57. Rottshaefer SM, Lazzaro BP (2012) No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster. PLoS One 7(7):e40500

    Article  Google Scholar 

  58. Rousset F, Vautrin D, Solignac M (1992) Molecular identification of Wolbachia the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc R Soc London, Ser B 247:163–168

    Article  CAS  Google Scholar 

  59. Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Endosymbionts responsible for various alterations of asexuality in Arthropods. Proceedings Biological Sciences 250:91–98

    Article  CAS  Google Scholar 

  60. Ruang-areerate T, Kittayapong P (2006) Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc Natl Acad Sci U S A 103:12534–12539

    Article  PubMed  CAS  Google Scholar 

  61. Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol 51:294–301

    Article  PubMed  CAS  Google Scholar 

  62. Stouthamer R (1993) The use of sexual versus asexual wasps in biological control. Entomophaga 38:3–6

    Article  Google Scholar 

  63. Subandiyah S, Nikoh N, Tsuyumu S, Somowiyarjo S, Fukatsu T (2000) Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: psylloidea). Zoological Science 17:983–989

    Article  Google Scholar 

  64. Sun X, Cui LW, Li ZH (2007) Diversity and phylogeny of Wolbachia infecting Bactrocera dorsalis (Diptera: tephritidae) populations from China. Environmental Entomology 36:1283–1289

    Article  PubMed  CAS  Google Scholar 

  65. Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: aphididae). Mol Biol Evol 13:510–524

    Article  PubMed  CAS  Google Scholar 

  66. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  67. Teixeira DD, Danet JL, Eveillard S, Martins EC, Junior WCJ, Yamamoto PT, Lopes SA, Bassanezi RB, Ayres AJ, Saillard C, Bove JM (2005) Citrus Huanglongbing in Sao Paulo State, Brazil: PCR detection of the 'Candidatus' liberibacter species associated with the disease. Molecular and Cellular Probes 19:173–179

    Article  CAS  Google Scholar 

  68. Teixeira DD, Saillard C, Eveillard S, Danet JL, da Costa PI, Ayres AJ, Bove J (2005) 'Candidatus liberibacter americanus', associated with citrus Huanglongbing (greening disease) in Sao Paulo State, Brazil. Int J Syst Evol Microbiol 55:1857–1862

    Article  CAS  Google Scholar 

  69. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. Plos Biology 6:e1000002

    Article  Google Scholar 

  70. Tiwari S, Mann RS, Rogers ME, Stelinski LL (2011) Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science 67:1258–1268

    Article  PubMed  CAS  Google Scholar 

  71. Turelli M, Hoffmann AA, McKechnie SW (1992) Dynamics of cytoplasmic incompatibility and mtDNA variation natural Drosophila simulans populations. Genetics 132:713–723

    PubMed  CAS  Google Scholar 

  72. Veneti Z, Clark ME, Karr TL, Savakis C, Bourtzis K (2004) Heads or tails: host–parasite interactions in the Drosophila–Wolbachia system. Appl Environ Microbiol 70:5366–5372

    Article  PubMed  CAS  Google Scholar 

  73. Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M (2012) Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci 109:12734–12739

    Article  PubMed  CAS  Google Scholar 

  74. Watanabe M, Miura K, Hunter MS, Wajnberg E (2011) Superinfection of cytoplasmic incompatibility-inducing Wolbachia is not additive in Orius strigicollis (Hemiptera: anthocoridae). Heredity 106:642–648

    Article  PubMed  CAS  Google Scholar 

  75. Weeks AR, Reynolds KT, Hoffmann AA, Mann H (2002) Wolbachia dynamics and host effects: what has (and has not) been demonstrated? Trends in Ecology & Evolution 17:257–262

    Article  Google Scholar 

  76. Wong ZS, Hedges LM, Brownlie JC, Johnson KN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS One 6(9):e25430

    Article  PubMed  CAS  Google Scholar 

  77. Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658

    Article  PubMed  CAS  Google Scholar 

  78. Zabalou S, Apostolaki A, Livadaras I, Franz G, Robinson AS, Savakis C, Bourtzis K (2009) Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain. Entomologia Experimentalis Et Applicata 132:232–240

    Article  Google Scholar 

  79. Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci U S A 101:15042–15045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors greatly appreciate the support of all of those that contributed in sample collection, especially those from Fundecitrus. We are also in debt with two anonymous reviewers which greatly contributed to improve the initial version of this manuscript. Thanks also to Fundecitrus, CNPq/MAPA (578797-2008/9) and FAPESP (process 2004/14215-0) for providing funds for this research.

This manuscript was reviewed by a professional science editor and by a native English-speaking copy editor to improve readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Cônsoli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidolin, A.S., Cônsoli, F.L. Molecular Characterization of Wolbachia Strains Associated with the Invasive Asian Citrus Psyllid Diaphorina citri in Brazil. Microb Ecol 65, 475–486 (2013). https://doi.org/10.1007/s00248-012-0150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0150-7

Keywords

Navigation