Skip to main content

Advertisement

Log in

Mesocosms of Aquatic Bacterial Communities from the Cuatro Cienegas Basin (Mexico): A Tool to Test Bacterial Community Response to Environmental Stress

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adams HE, Crump BC, Kling GW (2010) Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environ Microbiol 12:1319–1333

    Article  PubMed  CAS  Google Scholar 

  2. Alcaraz LD, Olmedo G, Bonilla G, Cerritos R, Hernández G (2008) The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc Natl Acad Sci U S A 105:5803–5808

    Article  PubMed  CAS  Google Scholar 

  3. Alonso-Sáez L, Gasol JM, Lefort T, Hofer J, Sommaruga R (2006) Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern Mediterranean coastal waters. Appl Environ Microbiol 72:5806–5813

    Article  PubMed  Google Scholar 

  4. Arrieta JM, Weinbauer MG, Herndl G (2000) Interspecific variability in sensitivity to UV radiation and subsequent recovery in selected isolates of marine bacteria. Appl Environ Microbiol 66:1468–1473

    Article  PubMed  CAS  Google Scholar 

  5. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  PubMed  CAS  Google Scholar 

  6. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    Article  PubMed  CAS  Google Scholar 

  7. Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–791

    Article  PubMed  CAS  Google Scholar 

  8. Bertilsson S, Eiler A, Nordqvist A, Jørgensen NOG (2007) Links between bacterial production, amino-acid utilization and community composition in productive lakes. ISME J 1:532–544

    Article  PubMed  CAS  Google Scholar 

  9. Breitbart M, Hoare A, Nitti A et al (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Cienegas, Mexico. Environ Microbiol 11:16–34

    Article  PubMed  CAS  Google Scholar 

  10. Callieri C (2007) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwat Rev 1:1–28

    Google Scholar 

  11. Cavicchioli R, Ostrowski M, Fegatella F, Goodchild A, Guixa-Boixereu N (2003) Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb Ecol 45:203–217

    Article  PubMed  CAS  Google Scholar 

  12. Cerritos R, Eguiarte LE, Avitia M et al (2011) Diversity of culturable thermo-resistant aquatic bacteria along an environmental gradient in Cuatro Cienegas, Coahuila, Mexico. Antonie Van Leeuwenhoek 99:303–318

    Article  PubMed  Google Scholar 

  13. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  14. DeSantis TZ, Dubosarskiy I, Murray SR, Andersen GL (2003) Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. Bioinformatics 19:1461–1468

    Article  PubMed  CAS  Google Scholar 

  15. Desnues C, Rodriguez-Brito B, Rayhawk S et al (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452:340–343

    Article  PubMed  CAS  Google Scholar 

  16. Escalante AE, Eguiarte LE, Espinosa L et al (2008) Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol Ecol 65:50–60

    Article  PubMed  CAS  Google Scholar 

  17. Fuchs BM, Spring S, Teeling H et al (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci U S A 104:2891

    Article  PubMed  CAS  Google Scholar 

  18. Fuerst JA, Hawkins JA, Holmes A et al (1993) Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43:125–134

    Article  PubMed  CAS  Google Scholar 

  19. García-Pichel F (1994) A model for the internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  20. Glöckner FO, Zaichikov E, Belkova N et al (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065

    Article  PubMed  Google Scholar 

  21. González JM, Fernández-Gómez B, Fernández-Guerra A et al (2008) Genome analysis of the proteorhodospin-containing marine bacterium Polaribacter sp. Proc Natl Acad Sci U S A 105:8724–8729

    Article  PubMed  Google Scholar 

  22. Green SJ, Jahnke LL (2010) Molecular investigations and experimental manipulations of microbial mats: a view to paleomicrobial ecosystems. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Berlin, pp 185–208

    Google Scholar 

  23. Hahn MW (2009) Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. IJSEM 59:112–117

    PubMed  CAS  Google Scholar 

  24. Hahn MW, Lünsdorf H, Wu Q et al (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451

    Article  PubMed  CAS  Google Scholar 

  25. Hisada T, Okamura K, Hiraishi A (2007) Isolation and characterization of phototrophic purple nonsulfur bacteria from Chloroflexus and cyanobacterial mats in hot springs. Microbes Environ 22:405–411

    Article  Google Scholar 

  26. Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327

    Article  PubMed  CAS  Google Scholar 

  27. Hughes JB, Hellmann JJ (2005) The application of rarefaction techniques to molecular inventories of microbial diversity. Meth Enzymol 397:292–308

    Article  PubMed  CAS  Google Scholar 

  28. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  29. Hutalle-Schmelzer KM, Zwirnmann E, Krüger A, Grossart HP (2010) Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions. FEMS Microbiol Ecol 72:58–73

    Article  PubMed  CAS  Google Scholar 

  30. Imhoff JF (2005) The Proteobacteria, part C. The Alphaproteobacteria family I. Rhodospirillaceae. In: Brenner DJ, Kreig NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 32

    Chapter  Google Scholar 

  31. Jagger J (1983) Physiological effects of near-ultraviolet radiation on bacteria. Photochem Photobiol Rev 7:1–75

    Article  CAS  Google Scholar 

  32. Jessup CM, Kassen R, Forde SE et al (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  PubMed  Google Scholar 

  33. Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UVB radiation. Appl Environ Microbiol 65:3820–3827

    PubMed  CAS  Google Scholar 

  34. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackenbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–157

    Google Scholar 

  35. Lauro FM, McDougald D, Thomas T et al (2009) The genomic basis of thropic strategy in marine bacteria. Proc Natl Acad Sci U S A 106:15527–15533

    Article  PubMed  CAS  Google Scholar 

  36. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinform 23:127–128

    Article  CAS  Google Scholar 

  37. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  PubMed  CAS  Google Scholar 

  38. Mackenzie C, Chidambaram M, Sodergren EJ, Kaplan S, Weinstock GM (1995) DNA repair mutants of Rhodobacter sphaeroides. J Bacteriol 177:3027–3035

    PubMed  CAS  Google Scholar 

  39. Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford, 256 p

    Google Scholar 

  40. Minckley W (1969) Environments of the Bolson of Cuatro Cienegas, Cuahuila, Mexico, with special reference to the aquatic biota. University of Texas, El Paso. Science Series 2:1–65

    Google Scholar 

  41. Moreno-Letelier A, Olmedo G, Eguiarte LE, Martínez-Castilla L, Souza V (2011) Parallel evolution and horizontal gene transfer of the pst operon in Bacillus from oligotrophic environments. Int J Evol Biol. doi:10.4061/2011/781642

  42. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  PubMed  CAS  Google Scholar 

  43. Nübel U, García-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  44. Ordoñez OF, Flores MR, Dib JR, Paz A, Farías ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58:461–473

    Article  PubMed  Google Scholar 

  45. Ostrowski M, Cavicchioli R, Blaauw M, Gottschal JC (2001) Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium Sphingomonas alaskensis strain RB2256. Appl Environ Microbiol 67:1292–1299

    Article  PubMed  CAS  Google Scholar 

  46. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  Google Scholar 

  47. Peimbert M, Alcaraz LD, Hernández I et al (2012) Extreme Redfield ratios, metagenomic and microbial diversity analyses of a seasonal shallow red pool in Cuatro Cienegas Coahuila, Mexico. Astrobiology (in press)

  48. Pettersson M, Baath E (2003) The rate of change of a soil bacterial community after liming as a function of temperature. Microb Ecol 46:177–186

    PubMed  CAS  Google Scholar 

  49. Philosof A, Sabehi G, Béjà O (2009) Comparative analyses of actinobacterial genomic fragments from Lake Kinneret. Environ Microbiol 11:3189–3200

    Article  PubMed  CAS  Google Scholar 

  50. Rényi A (1961) On measures of information and entropy. In: Proc 4th Berkeley Symp on Math, Statist Prob. Univ California, pp 547–561

  51. Ross JC, Vincent WF (1998) Temperature dependence of UV radiation effects on antarctic cyanobacteria. J Phycol 34:118–125

    Article  Google Scholar 

  52. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  53. Sharma AK, Sommerfeld K, Bullerjahn GS et al (2009) Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J 3:726–737

    Article  PubMed  CAS  Google Scholar 

  54. Souza V, Eguiarte LE, Siefert J, Elser JJ (2008) Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol 6:559–564

    Article  PubMed  CAS  Google Scholar 

  55. Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci U S A 103:6565–6570

    Article  PubMed  CAS  Google Scholar 

  56. Souza V, Siefert J, Escalante AE, Elser JJ, Eguiarte LE (2012) The Cuatro Cienegas Bolson in Coahuila, Mexico: an astrobiological Precambrian park. Astrobiology (in press)

  57. Szabo KE, Itor POB, Bertilsson S, Tranvik L, Eiler A (2007) Importance of rare and abundant populations for the structure and functional potential of freshwater bacterial communities. Aquat Microb Ecol 47:1–10

    Article  Google Scholar 

  58. Tobler M, Carson EW (2010) Environmental variation, hybridization, and phenotypic diversification in Cuatro Cienegas pupfishes. J Evol Biol 23:1475–1489

    Article  PubMed  CAS  Google Scholar 

  59. Vincent WF, Quesada A (1997) Microbial niches in the polar environment and the escape from UV radiation in non-marine habitats. In: Battaglia B, Valencia J, Walton D (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 388–395

    Google Scholar 

  60. Warnecke F, Amann R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6:242–253

    Article  PubMed  CAS  Google Scholar 

  61. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559

    Article  PubMed  CAS  Google Scholar 

  62. Winter C, Moeseneder MM, Herndl GJ (2001) Impact of UV radiation on bacterioplankton community composition. Appl Environ Microbiol 67:665–672

    Article  PubMed  CAS  Google Scholar 

  63. Yabuuchi E, Kosako Y (2005) Order IV. Sphingomonadales ord. nov. In: Brenner DJ, Kreig NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 230–233

    Google Scholar 

  64. Zwart G, Crump BC, Agterveld MPKW, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgments

This work was done with the grants to VS: SEP CONACyT 50705, SEMARNAT 0023459. and WWF-Alianza Carlos Slim OL039. SP had a postdoctoral scholarship from CSIC (Spain). VS and LEE worked on the manuscript during their sabbatical leave with a DGAPA support for VS and LEE and UC-Mexus/Conacyt support for LEE. We thank particularly R. González Chauvet, M. Rodríguez, C. Alonso, and A. Uscanga, as well as people from the Molecular and Experimental Evolution Laboratory (UNAM) for the technical assistance in the field, L. Espinosa Asuar for the technical assistance in the laboratory, L. Falcón for the methodological advise, and C. Rooks for reading the manuscript. We specially thank PRONATURA Noreste for the access to the Pozas Azules ranch, the office of APFF of Cuatro Cienegas for their constant support, and the Hotel Marielena for providing long-term housing and support for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Souza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 50 kb)

Table S2

(DOC 43 kb)

Table S3

(DOC 40 kb)

Table S4

(DOC 39 kb)

Table S5

(DOC 69 kb)

Figure S1

(PDF 345 kb)

Figure S2

(PDF 1634 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajares, S., Bonilla-Rosso, G., Travisano, M. et al. Mesocosms of Aquatic Bacterial Communities from the Cuatro Cienegas Basin (Mexico): A Tool to Test Bacterial Community Response to Environmental Stress. Microb Ecol 64, 346–358 (2012). https://doi.org/10.1007/s00248-012-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0045-7

Keywords

Navigation