Skip to main content
Log in

Gammaproteobacteria as a Possible Source of Eicosapentaenoic Acid in Anoxic Intertidal Sediments

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Eicosapentaenoic acid (EPA; n-20:5ω3) was found to be a constituent of phospholipids in three mesophilic strains of Gammaproteobacteria, which were isolated from anoxic most probable number series prepared with sediments from an intertidal flat of the German North Sea coast. Their partial 16S rRNA gene sequences identified the isolates as close relatives of Shewanella colwelliana, Vibrio splendidus, and Photobacterium lipolyticum. So far, eicosapentaenoic acid has mainly been reported to occur in eukaryotes and some piezophilic or psychrophilic bacteria. With decreasing temperature, relative contents of EPA (up to 14% of total fatty acids) increased in all strains. Additionally, Shewanella and Vibrio spp. showed a significant increase in monounsaturated fatty acids with lower growth temperature. Analysis of the phospholipid compositions revealed that EPA was present in all three major phospholipid types, namely, phosphatidyl glycerol (PG), cardiolipin and phosphatidyl ethanolamine (PE). However, EPA was enriched in PG and cardiolipin relative to PE. In the tidal flat sediments from which the isolates were obtained, substantial amounts of EPA-containing PG were detected, whereas other typical microeukaryotic phospholipids—being also a possible source of EPA—were abundant at the sediment surface but were present in clearly lower amounts in the anoxic layers beneath 5 cm depth. Therefore, the EPA-containing PG species in the deeper layers in these sediments may indicate the presence of Gammaproteobacteria closely related to the isolates. These bacteria appear to be an important source of EPA in buried, anoxic sediments beneath the layers harboring significant populations of benthic eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    PubMed  CAS  Google Scholar 

  2. Alonso DL, Belarbi EL, Rodriguez-Ruiz J, Segura CI, Gimenez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481

    Article  Google Scholar 

  3. Anderson R, Livermore BP, Kates M, Volcani BE (1978) The lipid composition of the non-photosynthetic diatom Nitzschia alba. Biochim Biophys Acta 528:77–88

    PubMed  CAS  Google Scholar 

  4. Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894

    PubMed  CAS  Google Scholar 

  5. Belicka LL, MacDonald RW, Yunker MB, Harvey RH (2004) The role of depositional regime on carbon transport and preservation in Arctic Ocean sediments. Mar Chem 86:65–88

    Article  CAS  Google Scholar 

  6. Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Phys B 83:711–719

    Article  CAS  Google Scholar 

  7. Blair NE, Levin LA, DeMaster DJ, Plaia G (1996) The short-term fate of fresh algal carbon in continental slope sediments. Limnol Oceanogr 41:1208–1219

    CAS  Google Scholar 

  8. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  9. Bowman JP, McCammon SA, Gibson JAE, Robertson L, Nichols PD (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69:2448–2462

    Article  PubMed  CAS  Google Scholar 

  10. Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    PubMed  CAS  Google Scholar 

  11. Chattopadhyay MK, Jagannadham MV (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24:386–388

    Article  Google Scholar 

  12. DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to change in hydrostatic pressure. Science 228:1101–1103

    Article  PubMed  CAS  Google Scholar 

  13. DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737

    PubMed  CAS  Google Scholar 

  14. De Siervo AJ, Reynolds JW (1975) Phospholipid composition and cardiolipin synthesis in fermentative and nonfermentative marine bacteria. J Bacteriol 123:294–301

    Google Scholar 

  15. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  PubMed  CAS  Google Scholar 

  16. Dunkelblum E, Tan SH, Silk PJ (1985) Double bond location in monounsaturated fatty acids by dimethyl disulfide derivatisation and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol 11:265–277

    Article  CAS  Google Scholar 

  17. Eberhard A, Rouser G (1971) Quantitative analysis of the phospholipids of some marine bioluminescent bacteria. Lipids 6:410–415

    Article  PubMed  CAS  Google Scholar 

  18. Freese E, Köster J, Rullkötter J (2008) Origin and composition of organic matter in tidal flat sediments from the German Wadden Sea. Org Geochem 39:820–829

    Article  CAS  Google Scholar 

  19. Frolova GM, Pavel KG, Shparteeva AA, Nedashkovskaya OI, Gorshkova NM, Ivanova EP, Mikhailov VV (2005) Lipid composition of novel Shewanella species isolated from far Eastern Seas. Microbiology 74:664–669

    Article  CAS  Google Scholar 

  20. Gentile G, Bonasera V, Amico C, Giuliano L, Yakimov MM (2003) Shewanella sp. GA-22, a psychrophilic hydrocarbonoclastic Antarctic bacterium producing polyunsaturated fatty acids. J Appl Microbiol 95:1124–1133

    Article  PubMed  CAS  Google Scholar 

  21. Hamamoto T, Takata N, Kudo T, Horikoshi K (1995) Characteristic presence of polyunsaturated fatty acids in marine psychrophilic Vibrios. FEMS Microbiol Lett 129:51–56

    CAS  Google Scholar 

  22. Hardwick EO, Ye W, Moran MA, Hodson RE (2003) Temporal dynamics of three culturable γ-Proteobacteria taxa in salt marsh sediments. Aquat Ecol 37:55–64

    Article  Google Scholar 

  23. Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    PubMed  CAS  Google Scholar 

  24. Henderson RJ, Millar R-M, Sargent JR (1995) Effect of growth temperature on the positional distribution of eicosapentaenoic acid and trans hexadecenoic acid in the phospholipids of a Vibrio species of bacterium. Lipids 30:181–185

    Article  PubMed  CAS  Google Scholar 

  25. Henderson RJ, Millar R-M, Sargent JR, Jostensen J-P (1993) Trans-Monoenoic and polyunsaturated fatty acids in phospholipids of a Vibrio species of bacterium in relation to growth conditions. Lipids 28:389–396

    Article  PubMed  CAS  Google Scholar 

  26. Hirota K, Nodasaka Y, Orikasa Y, Okuyama H, Yumoto I (2005) Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel (Pneumatophorus japonicus). Int J Syst Evol Microbiol 55:2355–2359

    Article  PubMed  CAS  Google Scholar 

  27. Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailolov VV, Nicolau DV, Christen R (2001) Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033

    PubMed  CAS  Google Scholar 

  28. Ivanova EP, Sawabe T, Hayashi K, Gorshkova NM, Zhukova NV, Nedashkovskaya OI, Mikhailov VV, Nicolau DV, Christen R (2003) Shewanella fidelis sp. nov., isolated from sediments and sea water. Int J Syst Evol Microbiol 53:577–582

    Article  PubMed  CAS  Google Scholar 

  29. Johns RB, Perry GJ (1977) Lipids of the marine bacterium Flexibacter polymorphus. Arch Microbiol 114:267–271

    Article  CAS  Google Scholar 

  30. Jostensen J-P, Landfald B (1996) Influence of growth conditions on fatty acid composition of a polyunsaturated-fatty-acid-producing Vibrio species. Arch Microbiol 165:306–310

    Article  PubMed  Google Scholar 

  31. Kalacheva GS, Vysotskii ES, Rodicheva EK, Fish AM (1981) Lipids of the luminescent bacteria Photobacterium mandapamensis. Microbiology 50:56–60

    Google Scholar 

  32. Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim Biophys Acta 116:264–278

    PubMed  CAS  Google Scholar 

  33. Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230

    Article  PubMed  CAS  Google Scholar 

  34. Könneke M, Widdel F (2003) Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria. Environ Microbiol 5:1064–1070

    Article  PubMed  CAS  Google Scholar 

  35. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830

    Article  PubMed  CAS  Google Scholar 

  36. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 113–175

    Google Scholar 

  37. Marsh D (1990) Handbook of lipid bilayers. CRC, Boca Raton

    Google Scholar 

  38. Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domerque F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  PubMed  CAS  Google Scholar 

  39. Nichols DS (2003) Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol Lett 219:1–7

    Article  PubMed  CAS  Google Scholar 

  40. Nichols DS, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  PubMed  CAS  Google Scholar 

  41. Nichols DS, Nichols PD, McMeekin T (1992) Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342. FEMS Microbiol Lett 98:117–122

    Article  CAS  Google Scholar 

  42. Nichols DS, Nichols PD, Russell NJ, Davies NW, McMeekin TA (1997) Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Biochim Biophys Acta 1347:164–176

    PubMed  CAS  Google Scholar 

  43. Nichols DS, Presser KA, Olley J, Ross T, McMeekin TA (2002) Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Appl Environ Microbiol 68:2809–2813

    Article  PubMed  CAS  Google Scholar 

  44. Nogi Y, Masui N, Kato C (1998) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7

    Article  PubMed  CAS  Google Scholar 

  45. Oliver JD, Colwell RR (1973) Extractable lipids of gram-negative marine bacteria: fatty acid composition. Int J Syst Bacteriol 23:442–458

    Article  CAS  Google Scholar 

  46. Rabus R, Brüchert V, Amann J, Könneke M (2002) Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417

    Article  CAS  PubMed  Google Scholar 

  47. Rajendran N, Matsuda O, Urushigawa Y (1992) Distribution of polar lipid fatty acid biomarkers for bacteria in sediments of a polluted bay. Microbios 72:143–152

    CAS  Google Scholar 

  48. Rajendran N, Nagatomo Y (1999) Seasonal changes in sedimentary microbial communities of two eutrophic bays as estimated by biomarkers. Hydrobiologia 393:117–125

    Article  CAS  Google Scholar 

  49. Ringø E, Sinclair PD, Birkbeck H, Barbour A (1992) Production of eicosapentaenoic acid (20:5 n-3) by Vibrio pelagius isolated from Turbot (Scophthalmus maximus (L.)) larvae. Appl Environ Microbiol 58:3777–3778

    PubMed  Google Scholar 

  50. Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767–779

    Article  PubMed  CAS  Google Scholar 

  51. Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Microbial communities in a Wadden Sea sediment core—clues from analyses of intact glyceride lipids, and released fatty acids. Org Geochem 33:803–816

    Article  Google Scholar 

  52. Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Phospholipid analysis as a tool to study microbial communities. J Microbiol Meth 48:149–160

    Article  Google Scholar 

  53. Sass A, Rütters H, Cypionka H, Sass H (2002) Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177:468–474

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378

    PubMed  CAS  Google Scholar 

  55. Skerratt J, Nichols PD, Bowman JP (2002) Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106

    Article  PubMed  CAS  Google Scholar 

  56. Süß J, Engelen B, Cypionka H, Sass H (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121

    Article  PubMed  CAS  Google Scholar 

  57. Süß J, Herrmann K, Seidel M, Cypionka H, Engelen B, Sass H (2008) Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels. Microb Ecol 55:371–383

    Article  PubMed  Google Scholar 

  58. Suutari M, Laakso S (1994) Microbial fatty-acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  PubMed  CAS  Google Scholar 

  59. Teece MA, Fogel ML, Dollhopf ME, Nealson KH (1999) Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org Geochem 30:1571–1579

    Article  CAS  Google Scholar 

  60. Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78

    Article  CAS  Google Scholar 

  61. Volkman JK, Dunstan GA, Jeffrey SW, Kearney PS (1991) Fatty acids from microalgae of the genus Pavlova. Phytochemistry 30:1855–1859

    Article  CAS  Google Scholar 

  62. Volkman JK, Johns RB (1977) The geochemical significance of positional isomers of unsaturated acids from an intertidal zone sediment. Nature 267:693–694

    Article  CAS  Google Scholar 

  63. Wang F, Wang P, Chen M, Xiao X (2004) Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 8:165–168

    Article  PubMed  CAS  Google Scholar 

  64. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  65. Wilms R, Sass H, Köpke B, Köster J, Cypionka H, Engelen B (2006) Specific eubacterial, archaeal and eukaryotic communities in tidal flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764

    Article  PubMed  CAS  Google Scholar 

  66. Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance by Dipl.-Ing. B. Kopke and would like to thank John K. Volkman for helpful discussion in the forefront of this paper. We thank six anonymous referees for their constructive comments and support. This work is a part of the research group on “BioGeoChemistry of Tidal Flats” and was funded by Deutsche Forschungsgemeinschaft (DFG grant no. RU 458/33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Sass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freese, E., Rütters, H., Köster, J. et al. Gammaproteobacteria as a Possible Source of Eicosapentaenoic Acid in Anoxic Intertidal Sediments. Microb Ecol 57, 444–454 (2009). https://doi.org/10.1007/s00248-008-9443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9443-2

Keywords

Navigation