Skip to main content
Log in

Numerical Methods for Finite-State Mean-Field Games Satisfying a Monotonicity Condition

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Here, we develop numerical methods for finite-state mean-field games (MFGs) that satisfy a monotonicity condition. MFGs are determined by a system of differential equations with initial and terminal boundary conditions. These non-standard conditions make the numerical approximation of MFGs difficult. Using the monotonicity condition, we build a flow that is a contraction and whose fixed points solve both for stationary and time-dependent MFGs. We illustrate our methods with a MFG that models the paradigm-shift problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Achdou, Y.: Finite difference methods for mean field games. In: Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Lecture Notes in Mathematics, vol. 2074, pp. 1–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36433-4_1

  2. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

    Article  MathSciNet  Google Scholar 

  3. Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Article  MathSciNet  Google Scholar 

  4. Achdou, Y., Cirant, M., Bardi, M.: Mean field games models of segregation. Math. Models Methods Appl. Sci. 27(1), 75–113 (2017)

    Article  MathSciNet  Google Scholar 

  5. Achdou, Y., Perez, V.: Iterative strategies for solving linearized discrete mean field games systems. Netw. Heterog. Media 7(2), 197–217 (2012)

    Article  MathSciNet  Google Scholar 

  6. Al-Mulla, N., Ferreira, R., Gomes, D.: Two numerical approaches to stationary mean-field games. Dyn. Games Appl. 7(4), 657–682 (2016)

    Article  MathSciNet  Google Scholar 

  7. Basna, R., Hilbert, A., Kolokoltsov, V.N.: An epsilon-Nash equilibrium for non-linear Markov games of mean-field-type on finite spaces. Commun. Stoch. Anal. 8(4), 449–468 (2014)

    MathSciNet  Google Scholar 

  8. Besancenot, D., Dogguy, H.: Paradigm shift: a mean-field game approach. Bull. Econ. Res. 67(3), 289–302 (2015). https://doi.org/10.1111/boer.12024

    Article  MathSciNet  MATH  Google Scholar 

  9. Briceño Arias, L.M., Kalise, D., Silva, F.J.: Proximal methods for stationary mean field games with local couplings. SIAM J. Control Optim. 56(2), 801–836 (2018). https://doi.org/10.1137/16M1095615

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games. Netw. Heterog. Media 7(2), 279–301 (2012)

    Article  MathSciNet  Google Scholar 

  11. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51(5), 3558–3591 (2013)

    Article  MathSciNet  Google Scholar 

  12. Carlini, E., Silva, F.J.: A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52(1), 45–67 (2014)

    Article  MathSciNet  Google Scholar 

  13. Carlini, E., Silva, F.J.: A semi-Lagrangian scheme for a degenerate second order mean field game system. Discret. Contin. Dyn. Syst. 35(9), 4269–4292 (2015)

    Article  MathSciNet  Google Scholar 

  14. Ferreira, R., Gomes, D.: On the convergence of finite state mean-field games through \(\Gamma \)-convergence. J. Math. Anal. Appl. 418(1), 211–230 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ferreira, R., Gomes, D.: Existence of weak solutions for stationary mean-field games through variational inequalities. Preprint (2016)

  16. Gomes, D., Mohr, J., Souza, R.R.: Discrete time, finite state space mean field games. J. Math. Pures Appl. 93(2), 308–328 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gomes, D., Mohr, J., Souza, R.R.: Continuous time finite state mean-field games. Appl. Math. Optim. 68(1), 99–143 (2013)

    Article  MathSciNet  Google Scholar 

  18. Gomes, D., Pimentel, E., Voskanyan, V.: Regularity theory for mean-field game systems. Springer Briefs in Mathematics. Springer, Cham (2016)

  19. Gomes, D., Saúde, J.: Mean field games models—a brief survey. Dyn. Games Appl. 4(2), 110–154 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gomes, D., Velho, R.M., Wolfram, M.-T.: Dual two-state mean-field games. In: Proceedings CDC 2014 (2014)

  21. Gomes, D., Velho, R.M., Wolfram, M.-T.: Socio-economic applications of finite state mean field games. In: Proceedings of the Royal Society A, Bd. 372(2028(S.)) (2014)

  22. Guéant, O.: Existence and uniqueness result for mean field games with congestion effect on graphs. Appl. Math. Optim. 72(2), 291–303 (2015). https://doi.org/10.1007/s00245-014-9280-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Guéant, O.: From infinity to one: the reduction of some mean field games to a global control problem. Preprint (2011)

  24. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  25. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Kolokoltsov, V.N., Malafeyev, O.A.: Mean-field-game model of corruption. Dyn. Games Appl. 7(1), 34–47 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MathSciNet  Google Scholar 

  28. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  29. Mészáros, A., Silva, F.J.: On the variational formulation of some stationary second-order mean field games systems. SIAM J. Math. Anal. 50(1), 1255–1277 (2018). https://doi.org/10.1137/17M1125960

    Article  MathSciNet  MATH  Google Scholar 

  30. Mészáros, A.R., Silva, F.J.: A variational approach to second order mean field games with density constraints: the stationary case. J. Math. Pures Appl. (9) 104(6), 1135–1159 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo A. Gomes.

Additional information

D. Gomes was partially supported by KAUST baseline and start-up funds and KAUST SRI, Center for Uncertainty Quantification in Computational Science and Engineering. J. Saúde was partially supported by FCT/Portugal through the CMU-Portugal Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, D.A., Saúde, J. Numerical Methods for Finite-State Mean-Field Games Satisfying a Monotonicity Condition. Appl Math Optim 83, 51–82 (2021). https://doi.org/10.1007/s00245-018-9510-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9510-0

Keywords

Mathematics Subject Classification

Navigation