Skip to main content
Log in

Completely Mixed Strategies for Two Structured Classes of Semi-Markov Games, Principal Pivot Transform and Its Generalizations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this article, we revisit the applications of principal pivot transform and its generalization for a rectangular matrix (in the context of vertical linear complementarity problem) to solve some structured classes of zero-sum two-person discounted semi-Markov games with finitely many states and actions. The single controller semi-Markov games have been formulated as a linear complementarity problem and solved using a stepwise principal pivoting algorithm. We provide a sufficient condition for such games to be completely mixed. The concept of switching controller semi-Markov games is introduced and we prove the ordered field property and the existence of stationary optimal strategies for such games. Moreover, such games are formulated as a vertical linear complementarity problem and have been solved using a stepwise generalized principal pivoting algorithm. Sufficient conditions are also given for such games to be completely mixed. For both these classes of games, some properties analogous to completely mixed matrix games, are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case, p. 139. Academic Press, New York (1978)

    MATH  Google Scholar 

  2. Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Comb. Theory 8, 79–90 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  4. Ebiefung, A.A.: Existence theory and Q-matrix characterization for the generalized linear complementarity problem. Linear Algebra Appl. 223(224), 155–169 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Filar, J.A., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York (1997)

    MATH  Google Scholar 

  6. Filar, J.A.: Ordered field property for stochastic games when the player who controls transitions changes from state to state. J. Optim. Theory Appl. 34(4), 503–515 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Filar, J.A.: The completely mixed single-controller stochastic game. Proc. Am. Math. Soc. 95(4), 585–594 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Filar, J.A., Schultz, T.A., Thuijsman, F., Vrieze, O.J.: Nonlinear programming and stationary equilibria in stochastic games. Math Prog. 50(1–3), 227–237 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heuer, G.A.: On completely mixed strategies on bimatrix games. J. Lond. Math. Soc. 11(2), 17–20 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jurdzinski, M., Savani, R.: A simple P-matrix linear complementarity problem for discounted games. In: Beckmann, A., Dimitracopoulos, C., Lwe, B. (eds.) Lecture Notes In Computer Science, CiE 2008, LNCS 5028, pp. 283–293. Springer, Berlin (2008)

    Google Scholar 

  11. Jurg, A.P., Jansen, M.J.M., Parthasarathy, T., Tijs, S.H.: On weakly completely mixed bimatrix games. Linear Algebra Appl. 141, 61–74 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaplansky, I.: A contribution to von Neumanns theory of games. Ann. Math. 46(2), 474–479 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lal, A.K., Sinha, S.: Zero-sum two-person semi-Markov games. J. Appl. Prob. 29(1), 56–72 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11, 681–689 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Luque-Vasquez, F.: Zero-sum semi-Markov games in Borel spaces: discounted and average payoff. Bol. Soc. Mat. Mex. 8, 227–241 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Mohan, S.R., Raghavan, T.E.S.: Algorithm for discounted switching control games. OR Spectr. 9, 41–45 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mohan, S.R., Neogy, S.K., Sridhar, R.: The generalized linear complementarity problem revisited. Math. Prog. 74, 197–218 (1996)

    MATH  MathSciNet  Google Scholar 

  18. Mohan, S.R., Neogy, S.K., Parthasarathy, T.: Pivoting algorithms for some classes of stochastic games: a survey. Int. Game Theory Rev. 3(2 & 3), 253–281 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mondal, P., Sinha, S.: Ordered field property for semi-Markov games when one player controls transition probabilities and transition times. Int. Game Theory Rev. 17(2), 1540022-1–1540022-26 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mondal, P., Sinha, S., Neogy, S.K., Das, A.K.: On discounted AR-AT semi-Markov games and its complementarity formulations. Int. J. Game Theory (2015). doi:10.1007/s00182-015-0470-1

  21. Mondal, P.: Linear programming and zero-sum two-person undiscounted semi-Markov games. Asia Pac. J. Oper. Res. 32(6), 1550043-1–1550043-20 (2015)

  22. Neogy, S.K., Das, A.K., Gupta, A.: Generalized principal pivot transforms, complementarity theory and their applications in stochastic games. Optim. Lett. 6, 339–356 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Neogy, S. K., Dubey, D. and Ghorui, D. (2015): Completely mixed generalized bimatrix game, vertical linear complementarity problem and completely mixed switching controller stochastic game, Preprints, isid/SQCORD/2015/03

  24. Parthasarathy, T., Raghavan, T.E.S.: An orderfield property for stochastic games when one player controls transition probabilities. J. Optim. Theory Appl. 33(3), 375–392 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Parsons, T.D.: Applications of principal pivoting. In: Kuhn, H.W. (ed.) Proceedings of the Princeton Symposium on Mathematical Programming, Princeton University Press, Princeton, New Jersey, pp. 561–581 (1970)

  26. Raghavan, T.E.S.: Completely mixed strategies in bimatrix games. J. Lond. Math. Soc. 2(2), 709–712 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ross, S.M.: Applied Probability Models with Optimization Applications. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  28. Schultz, T.A.: Linear complementarity and discounted switching controller stochastic games. J. Optim. Theory Appl. 73(1), 89–99 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shapley, L.: Stochastic games. Proc. Natl. Acad. Sci. USA 39(10), 1095–1100 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shapley, L.S., Snow, R.N.: Basic Solutions of Discrete Games, Annals of Mathematics Studies, vol. 24. Princeton University Press, Princeton (1950)

    MATH  Google Scholar 

  31. Tsatsomeros, M.: Principal pivot transforms: properties and applications. Linear Algebra Appl. 307, 151–165 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tucker, A.W.: Principal pivotal transforms of square matrices. SIAM Rev. 5, 305 (1963)

    Google Scholar 

  33. Vrieze, O.J., Tijs, S.H., Raghavan, T.E.S., Filar, J.A.: A finite algorithm for the switching controller stochastic game. OR Spectr. 5, 15–24 (1983)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the unknown referees who have patiently gone through this paper and whose suggestions have improved its presentation and readability considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, P., Neogy, S.K., Sinha, S. et al. Completely Mixed Strategies for Two Structured Classes of Semi-Markov Games, Principal Pivot Transform and Its Generalizations. Appl Math Optim 76, 593–619 (2017). https://doi.org/10.1007/s00245-016-9362-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9362-4

Keywords

Mathematics Subject Classification

Navigation