Skip to main content
Log in

Minimal Time Problem with Impulsive Controls

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Time optimal control problems for systems with impulsive controls are investigated. Sufficient conditions for the existence of time optimal controls are given. A dynamical programming principle is derived and Lipschitz continuity of an appropriately defined value functional is established. The value functional satisfies a Hamilton–Jacobi–Bellman equation in the viscosity sense. A numerical example for a rider-swing system is presented and it is shown that the reachable set is enlargered by allowing for impulsive controls, when compared to nonimpulsive controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  2. Aronna, S., Rampazzo, F.: On optimal control problems with impulsive commutative dynamics. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 1822–1827 (2013)

  3. Bardi, M., Capuzzo, I.: Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  4. Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications (Berlin), vol. 17. Springer, Paris (1994)

    Google Scholar 

  5. Bensoussan, A., Lions, J.L.: Impulse Control and Quasi-variational Inequalities. Gauthier-Villars, Paris (1984)

    MATH  Google Scholar 

  6. Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48(7), 4292–4316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bressan, A., Bressan, F.: On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. 7(2–B), 641–656 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Bressan, A., Rampazzo, F.: Impulsive control-systems with commutativity assumptions. J. Optim. Theory Appl. 71(1), 67–83 (1991)

    Article  MATH  Google Scholar 

  9. Bressan, A., Rampazzo, F.: Impulsive control-systems without commutativity assumptions. J. Optim. Theory Appl. 81(3), 435–457 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Briani, A., Zidani, H.: Characterization of the value function of final state constrained control problems with BV trajectories. Commun. Pure Appl. Anal. 10(6), 1567–1587 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Camilli, F., Falcone, M.: Analysis and approximation of the infinite horizon problem with impulsive controls. Avtomatika i Telemekanika 7, 169–184 (1997)

    MATH  Google Scholar 

  12. Camilli, F., Falcone, M.: Approximation of control problems involving ordinary and impulsive controls. ESAIM Control Optim. Calc. Var. 4, 159–176 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, vol. 58. Birkhäuser Boston Inc, Boston (2004)

    MATH  Google Scholar 

  14. Catlla, A., Schaeffer, D., Witelski, T., Monson, E., Lin, A.: On spiking models for synaptic activity and impulsive differential equations. SIAM Rev. 50(3), 553–569 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clarke, F.H., Ledyaev, Yu.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

  16. Dal Maso, G., Rampazzo, F.: On systems of ordinary differential equations with measures as controls. Differ. Integr. Equ. 4, 739–765 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Falcone, M., Giorgio, T., Loreti, P.: Level sets of viscosity solutions: some applications to fronts and rendez-vous problems. SIAM J. Appl. Math. 54(5), 1335–1354 (1994)

    Article  MATH  Google Scholar 

  18. Gajardo, P., Ramirez, C., Rapaport, C.: Minimal time sequential batch reactors with bounded and impulse controls for one or more species. SIAM J. Control Optim. 47(6), 2827–2856 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Forcadel, N., Rao, Z., Zidani, H.: State constrained optimal control problems of impulsive differential equations. Appl. Math. Optim. 68, 1–19 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Motta, M., Rampazzo, F.: Dynamic programming for nonlinear systems driven by ordinary and impulsive controls. SIAM J. Control Optim. 34(1), 199–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pereira, F.L., Silva, G.N.: Necessary conditions of optimality for vector-valued impulsive control problems. Syst. Control Lett. 40(3), 205–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Piccoli, B.: Time-optimal control problems for the swing and the ski. Int. J. Control 62(6), 1409–1429 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rampazzo, F., Sartori, C.: The minimal time function with unbounded controls. J. Math. Syst. Estim. Control 8, 1–34 (1998)

    MATH  Google Scholar 

  24. Rao, Z.: Hamilton-Jacobi-Bellman approach for optimal control problems with discontinuous coefficients. https://pastel.archives-ouvertes.fr/pastel-00927358

  25. Rishel, R.W.: An extended Pontryagin principle for control systems whose control laws contain measures. SIAM J. Control 3(2), 191–205 (1965)

    MathSciNet  MATH  Google Scholar 

  26. Silva, G.N., Vinter, R.B.: Measure driven differential inclusions. J. Math. Anal. Appl. 202, 746–767 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Silva, G.N., Vinter, R.B.: Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim. 35(6), 1829–1846 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wolenski, P.R., Zabic, S.: A differential solution concept for impulsive systems. Differ. Equ. Dyn. Syst. 2, 199–210 (2006)

    MathSciNet  Google Scholar 

  29. Wolenski, P.R., Zabic, S.: A sampling method and approximation results for impulsive systems. SIAM J. Control Optim. 46(3), 983–998 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunisch, K., Rao, Z. Minimal Time Problem with Impulsive Controls. Appl Math Optim 75, 75–97 (2017). https://doi.org/10.1007/s00245-015-9324-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-015-9324-2

Keywords

Mathematics Subject Classification

Navigation