Skip to main content
Log in

Mean Squared Error Minimization for Inverse Moment Problems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider the problem of approximating the unknown density \(u\in L^2(\Omega ,\lambda )\) of a measure \(\mu \) on \(\Omega \subset \mathbb {R}^n\), absolutely continuous with respect to some given reference measure \(\lambda \), only from the knowledge of finitely many moments of \(\mu \). Given \(d\in \mathbb {N}\) and moments of order \(d\), we provide a polynomial \(p_d\) which minimizes the mean square error \(\int (u-p)^2d\lambda \) over all polynomials \(p\) of degree at most \(d\). If there is no additional requirement, \(p_d\) is obtained as solution of a linear system. In addition, if \(p_d\) is expressed in the basis of polynomials that are orthonormal with respect to \(\lambda \), its vector of coefficients is just the vector of given moments and no computation is needed. Moreover \(p_d\rightarrow u\) in \(L^2(\Omega ,\lambda )\) as \(d\rightarrow \infty \). In general nonnegativity of \(p_d\) is not guaranteed even though \(u\) is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing \(p_d\ge 0\) that minimizes \(\int (u-p)^2d\lambda \) now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of solutions of nonlinear differential equations. In all cases our results are significantly better than those obtained with the maximum entropy technique for estimating \(u\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ash, R.B.: Real Analysis and Probability. Academic Press Inc., Boston (1972)

    Google Scholar 

  2. Athanassoulis, G.A., Gavriliadis, P.N.: The truncated Hausdorff moment problem solved by using kernel density functions. Probab. Eng. Mech. 17, 273–291 (2002)

    Article  Google Scholar 

  3. Baker, G.A., Graves-Morris, P.: Padé Approximants. Addison-Wesley, Reading (1981)

    Google Scholar 

  4. Bertero, M., De Mol, C., Pike, E.R.: Linear inverse problems with discrete data. I: general formulation and singular system analysis. Inverse Probl. 1(4), 301–330 (1985)

    Article  MATH  Google Scholar 

  5. Borwein, J.M., Lewis, A.S.: On the convergence of moment problems. Trans. Am. Math. Soc. 325(1), 249–271 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Density estimation by wavelet thresholding. Ann. Stat. 24(2), 508–539 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eloyan, A., Ghosh, S.K.: Smooth density estimation with moment constraints using mixture distributions. J. Nonparametr. Stat. 23(2), 513–531 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gavriliadis, P.N., Athanassoulis, G.A.: The truncated Stieltjes moment problem solved by using kernel density functions. J. Comput. Appl. Math. 236, 4193–4213 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodrich, R.K., Steinhardt, A.: \(L_2\) spectral estimation. SIAM J. Appl. Math. 46(3), 417–426 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Henrion, D., Lasserre, J.B., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Henrion, D., Malick, J.: Projection methods in convex optimization. In: Anjos, M., Lasserre, J.B. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization. International Series in Operations Research and Management Science, vol. 166, pp. 565–600. Springer Verlag, Berlin (2012)

    Google Scholar 

  12. Izenman, A.J.: Recent developments in nonparametric density estimation. J. Am. Stat. Assoc. 86(413), 205–224 (1991)

    MATH  MathSciNet  Google Scholar 

  13. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. Ser. II 106(4), 620–630 (1957)

    MATH  MathSciNet  Google Scholar 

  14. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. Ser. II 108(2), 171–190 (1957)

    MathSciNet  Google Scholar 

  15. John, V., Angelov, I., Öncül, A.A., Thévenin, D.: Techniques for the reconstruction of a distribution from a finite number of its moments. Chem. Eng. Sci. 62(11), 2890–2904 (2007)

    Article  Google Scholar 

  16. Jones, L.K., Trutzer, V.: On extending the orthogonality property of minimum norm solutions in Hilbert space to general methods for linear inverse problems. Inverse Probl. 6(3), 379–388 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kerkyacharian, G., Picard, D.: Density estimation by kernel and wavelet methods: optimality of Besov spaces. Stat. Probab. Lett. 18(4), 327–336 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Landau, H.J.: Moments in mathematics. In: Proceedings of the Symposium on Applied Mathematics, vol. 37. American Mathematical Society, Providence (1987)

  19. Lasserre, J.B., Henrion, D., Prieur, C., Trelat, E.: Nonlinear optimal control via occupation measures and LMI-relaxations. SIAM J. Control Optim. 47(4), 1643–1666 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2010)

    MATH  Google Scholar 

  21. Lasserre, J.B.: A new look at nonnegativity on closed sets and polynomial optimization. SIAM J. Optim. 21, 864–885 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 254–266 (1996)

    Article  Google Scholar 

  23. Mead, L.R., Papanicolaou, N.: Maximum entropy in the problem of moments. J. Math. Phys. 25(8), 2404–2417 (1984)

    Article  MathSciNet  Google Scholar 

  24. Mevissen, M., Lasserre, J.B., Henrion, D.: Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equation. In: Proceedings of the IFAC World Congress on Automatic Control, Milan, Italy (2011)

  25. Mimura, M.: Asymptotic behaviors of a parabolic system related to a planktonic prey and predator model. SIAM J. Appl. Math. 37(3), 499–512 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mnatsakanov, R.M.: Moment-recovered approximations of multivariate distributions: the Laplace transform inversion. Stat. Probab. Lett. 81(1), 1–7 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  28. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Provost, S.B.: Moment-based density approximations. Math. J. 9(4), 727–756 (2005)

    Google Scholar 

  30. Sturm, J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  31. Talenti, G.: Recovering a function from a finite number of moments. Inverse Probl. 3(3), 501–517 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  33. Vannucci, M.: Nonparametric density estimation using wavelets. Discussion Paper, pp. 95–26, ISDS, Duke University (1998)

Download references

Acknowledgments

D. Henrion acknowledges support by project number 13-06894S of the Grant Agency of the Czech Republic. The major part of this work was carried out during M. Mevissen’s stay at LAAS-CNRS, supported by a fellowship within the Postdoctoral Programme of the German Academic Exchange Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Henrion.

Additional information

Communicated by Joseph Frederic Bonnans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrion, D., Lasserre, J.B. & Mevissen, M. Mean Squared Error Minimization for Inverse Moment Problems. Appl Math Optim 70, 83–110 (2014). https://doi.org/10.1007/s00245-013-9235-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-013-9235-z

Keywords

Navigation