Skip to main content
Log in

On the Use of Epigaeic Mosses to Biomonitor Atmospheric Deposition of Nitrogen

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study, we investigated whether the terrestrial moss Pseudoscleropodium purum can be used to biomonitor atmospheric deposition of nitrogen (N). For this purpose, we first determined whether there are any interspecific differences in the concentrations of total N and δ15N between the two species of terrestrial moss most commonly used in biomonitoring studies, P. purum and Hypnum cupressiforme. Second, we determined the spatial distribution of N and δ15N at small and large scales: (1) by analysis of 165 samples from the surroundings of an aluminium smelter and (2) by analysis of 149 samples from sites forming part of a regular 15 × 15–km sampling network in Galicia (northwest Spain). We did not find any interspecific differences in either total N or δ15N. Analysis of δ15N enabled us to identify large-scale spatial patterns of distribution that were congruent with the location of the main N emission sources (unlike the analysis of total N). However, we did not identify any such patterns for the small-scale source of N emission studied. The results show that analysis of δ15N has an advantage compared with the analysis of total N in that it provides information about the source of N rather than about the amount of N received. Furthermore, isotope discrimination appears to occur, with the bryophytes preferentially accumulating the N14 isotope. Although this amplifies the signal of reduced forms, it is not problematical for determining spatial-distribution patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboal JR, Couto JA, Fernández JA, Carballeira A (2006a) Definition and number of subsamples for using mosses as biomonitors of airbone trace elements. Arch Environ Contam Toxicol 50:88–96

    Article  CAS  Google Scholar 

  • Aboal JR, Real C, Fernández JA, Carballeira A (2006b) Mapping the results of extensive surveys: the case of atmospheric biomonitoring and terrestrial mosses. Sci Total Environ 356:256–274

    Article  CAS  Google Scholar 

  • Arróniz-Crespo M, Leake JR, Horton P, Phoenix GK (2008) Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland. New Phytol 180:864–874

    Article  Google Scholar 

  • Boquete MT, Fernández JA, Aboal JR, Real C, Carballeira A (2009) Spatial structure of trace elements in extensive biomonitoring surveys with terrestrial mosses. Sci Total Environ 408:153–162

    Article  CAS  Google Scholar 

  • Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hájek T et al (2005) Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Chang Biol 11:106–114

    Article  Google Scholar 

  • Carballeira A, Fernández JA, Aboal JR, Real C, Couto JA (2006) Moss: A powerful tool for dioxin monitoring. Atmos Environ 40(30):5776–5786

    Article  CAS  Google Scholar 

  • Carballeira CB, Aboal JR, Fernández JA, Carballeira A (2008) Comparison of the accumulation of elements in two terrestrial moss species. Atmos Environ 42:4904–4917

    Article  CAS  Google Scholar 

  • Cressie N (1986) Krigging nonstationary data. J Am Stat Assoc 81:625–634

    Article  Google Scholar 

  • Cressie N, Hawkins DM (1980) Robust estimation of the variogram. J Int Assoc Math Geol 12:115–125

    Article  Google Scholar 

  • Erisman JW, Brydges T, Bull K, Gowling E, Grennfelt P, Nordberg L et al (1998) Summary statement. Environ Pollut 102:3–12

    Article  CAS  Google Scholar 

  • Fernández JA, Carballeira A (2000) Evaluation of contamination, by different elements, in terrestrial mosses. Arch Environ Contam Toxicol 40:461–468

    Google Scholar 

  • Fernández JA, Aboal JR, Couto JA, Carballeira A (2002) Sampling optimization at the sampling-site scale for monitoring atmospheric deposition using moss chemistry. Atmos Environ 36:1163–1172

    Article  Google Scholar 

  • Fernández JA, Aboal JR, Real C, Carballeira A (2007) A new moss biomonitoring method for detecting sources of small scale pollution. Atmos Environ 41:2098–2110

    Article  Google Scholar 

  • Freyer HD (1978) Seasonal trends of NH4 + and NO -3 nitrogen isotope composition in rain collected at Jülich, Germany. Tellus B Chem Phys Meteorol 30:83–92

    CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Garten CT Jr (1992) Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. Int J Environ Anal Chem 47:33–45

    Article  CAS  Google Scholar 

  • Gerdol R, Bragazza L (2006) Effects of altitude on element accumulation in alpine moss. Chemosphere 64:810–816

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E, Kubin E et al (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159:2852–2860

    Article  CAS  Google Scholar 

  • Heaton THE, Spiro B, Robertson SMC (1997) Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition. Oecologia 109:600–607

    Article  Google Scholar 

  • Knulst JC, Westling HO, Brorstrom-Lunden E (1995) Airborne organic micropollutant concentrations in mosses and humus as indicators for local versus long-range sources. Environ Monit Assess 36:75–91

    Article  CAS  Google Scholar 

  • Koranda M, Kerschbaum S, Wanek W, Zechmeister HA, Richter A (2007) Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition. Ann Bot 99:161–169

    Article  CAS  Google Scholar 

  • Kunert M, Friese K, Weckert V, Markert B (1999) Lead isotope systematics in Polytrichum formosum: an example from a biomonitoring field study with mosses. Environ Sci Technol 33:3502–3505

    Article  CAS  Google Scholar 

  • Lead WA, Steinnes E, Jones KC (1996) Atmospheric deposition of PCBs to moss (Hylocomium splendens) in Norway between 1977 and 1990. Environ Sci Technol 30:524–530

    Article  CAS  Google Scholar 

  • Leith ID, Van Dijk N, Pitcairn CER, Wolseley PA, Whitfield CP, Sutton MA (2005) Biomonitoring methods for assessing the impacts of nitrogen pollution: refinement and testing. Jt Nat Conserv Comm, Report 386

    Google Scholar 

  • Liu X-Y, Xiao HY, Liu CQ, Li YY, Xiao HW (2008a) Atmospheric transport of urban-derived NHx: evidence from nitrogen concentration and δ15N in epilithic mosses at Guiyang, SW China. Environ Pollut 156:715–722

    Article  CAS  Google Scholar 

  • Liu XY, Xiao HY, Liu CQ, Li YY, Xiao HW (2008b) Tissue N content and 15N natural abundance in epilithic mosses for indicating atmospheric N deposition in the Guiyang area, SW China. Appl Geochem 23:2708–2715

    Article  CAS  Google Scholar 

  • Liu XY, Xiao HY, Liu CQ, Li YY, Xiao HW (2008c) Stable carbon and nitrogen isotopes of the moss Haplocladium microphyllum in an urban and a background area (SW China): the role of environmental conditions and atmospheric nitrogen deposition. Atmos Environ 42:5413–5423

    Article  CAS  Google Scholar 

  • Méndez MR, Souto JA, Casares JJ, Lucas T, Carmichael GR (2003) The effect of the limited availability of H2O2 in the competitive deposition of sulfur and oxidized nitrogen. Chemosphere 53:1165–1178

    Article  Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Physiol Rev 77:789–793

    Article  CAS  Google Scholar 

  • Orlinski R (2002) Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons: concentrations profile and distribution along Warsaw main streets. Chemosphere 48:181–186

    Article  CAS  Google Scholar 

  • Papastefanou C, Manolopoulou M, Sawidis T (1989) Lichens and mosses: a biological monitor of radioactive fallout from the Chernobyl reactor accident. J Environ Radioact 9:199–207

    Article  CAS  Google Scholar 

  • Papastefanou C, Manolopoulou M, Sawidis T (1992) Residence time and uptake rates of 137-Cs in lichens and mosses at temperate latitude (40(N). Environ Int 18:397–401

    Article  CAS  Google Scholar 

  • Pearson J, Wells D, Seller KJ, Bennett A, Soares A, Woodall J et al (2000) Traffic exposure increases natural 15 N and heavy metal concentrations in mosses. New Phytol 147:317–326

    Article  CAS  Google Scholar 

  • Pérez-Llamazares A, Aboal JR, Carballeira A, Fernández JA (2011) Cellular location of K, Na, Cd and Zn in the moss Pseudoscleropodium purum in an extensive survey. Sci Total Environ 409:1198–1204

    Article  Google Scholar 

  • Pitcairn CER, Fowler D, Grace J (1995) Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environ Pollut 99:193–205

    Article  Google Scholar 

  • Pitcairn C, Fowler D, Leith I, Sheppard L, Tang S, Sutton M et al (2006) Diagnostic indicators of elevated nitrogen deposition. Environ Pollut 144:941–950

    Article  CAS  Google Scholar 

  • Poikolainen J, Piispanen J, Karhu J, Kubin E (2009) Long-term changes in nitrogen deposition in Finland (1990–2006) monitored using the moss Hylocomium splendens. Environ Pollut 157:3091–3097

    Article  CAS  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Real C, Aboal JR, Fernández JA, Carballeira A (2003) The use of native mosses to monitor fluorine levels—and associated temporal variations—in the vicinity of an aluminium smelter. Atmos Environ 37:3091–3102

    Article  CAS  Google Scholar 

  • Ripley B (2002) The KernSmooth Package. S original by M. Wand, R Port by B. Ripley. http://www.R-project.org

  • Rühling Ǻ, Tyler G (1968) An ecological approach to the lead problem. Bot Notiser 122:248–342

    Google Scholar 

  • Salemaa M, Mäkipää R, Oksanen J (2008) Differences in the growth response of three bryophyte species to nitrogen. Environ Pollut 152:82–91

    Article  CAS  Google Scholar 

  • Sawidis T, Heinrich G, Chettri MK (1999) Cesium-137 monitoring using mosses from Macedonia, N. Greece. Water Air Soil Pollut 110:171–179

    Article  CAS  Google Scholar 

  • Sawidis T, Tsikritzis L, Tsigaridas K (2009) Cesium-137 monitoring using mosses from W. Macedonia, N. Greece. J Environ Manage 90:2620–2627

    Article  CAS  Google Scholar 

  • Schröder W, Pesch R (2010) Long-term monitoring of the metal accumulation in forests measured by use of the moss technique. Eur J For Res 129:475–488

    Article  Google Scholar 

  • Shakya K, Chettri MK, Sawidis T (2007) Experimental investigations of five different mosses on accumulation capacities of Cu, Pb and Zn. Toxicol Environ Chem 1–17

  • Shakya K, Chettri MK, Sawidis T (2008) Impact of heavy metals (copper, zinc and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol 54:412–421

    Article  CAS  Google Scholar 

  • Solga A, Frahm JP (2006) Nitrogen accumulation by six pleurocarpous moss species and their suitability for monitoring nitrogen deposition. J Bryol 28:46–52

    Article  Google Scholar 

  • Solga A, Burkhardt J, Zechmeister HG, Frahm JP (2005) Nitrogen content, 15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt. and Sclerpodium purum (Hedw.) Limpr. in relation to atmospheric nitrogen deposition. Environ Pollut 134:465–473

    Article  CAS  Google Scholar 

  • Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A et al (2011a) The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environ Pollut 15:2243–2250

    Article  Google Scholar 

  • Stevens CJ, Manning P, Van den Berg LJL, CC de Graaf M, Wieger Wamelink GW, Boxman AW, et al. (2011b) Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitat. Environ Pollut 159:665–676

  • Triulzi C, Nonnis Marzano F, Vaghi M (1996) Important alpha, beta and gamma-emitting radionuclides in lichens and mosses collected in different world areas. Ann Chim 86:699–704

    CAS  Google Scholar 

  • Tsikritzis L, Ganatsios S, Duliu O, Sawidis T (2002) Heavy metals distribution in some lichens, mosses and trees in the vicinity of lignite power plants from Western Macedonia, Greece. J Trace Microprobe T 20:395–413

    Article  CAS  Google Scholar 

  • Tsikritzis L, Ganatsios S, Duliu O, Sawidis T (2003) Natural and artificial radionuclides distribution in some lichens, mosses and trees in the vicinity of lignite power plants from Western Macedonia, Greece. J Trace Microprobe T 21:543–554

    Article  CAS  Google Scholar 

  • Tyler G, Rühling Ǻ (1970) Moss analysis—A method for surveying heavy metal deposition. In: Procedings of Second International Clean Air Congress, Washington, December 6–11

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall International Editions, London

    Google Scholar 

  • Zechmeister HG, Richter A, Smidt S, Hohenwallner D, Roder I, Maringer S et al (2008) Total nitrogen content and δ15N signatures in moss tissue: Indicative value for nitrogen deposition patterns and source allocation on a nationwide scale. Environ Sci Technol 42:8661–8667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was partly funded by the Xunta de Galicia, project PGIDT05TAM20001PR: “Biomonitorización de la contaminación atmosférica mediante musgos terrestres: revisión y optimización metodológica.” The investigators are grateful to María Arróniz-Crespo and José Antonio Souto for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Varela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varela, Z., Carballeira, A., Fernández, J.A. et al. On the Use of Epigaeic Mosses to Biomonitor Atmospheric Deposition of Nitrogen. Arch Environ Contam Toxicol 64, 562–572 (2013). https://doi.org/10.1007/s00244-012-9866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9866-0

Keywords

Navigation