Skip to main content

Advertisement

Log in

Quantification of Environmental Tobacco Smoke Contribution on Outdoor Particulate Aliphatic and Polycyclic Aromatic Hydrocarbons

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The objective of this study was to identify and quantify the sources of fine particulate aliphatic and polycyclic aromatic hydrocarbons (PAHs) in an urban area in southeastern Europe. A total of 91 urban PM2.5 samples were analyzed by gas chromatography coupled with mass spectrometry for alkanes and PAHs. Exploratory statistical tools were applied to resolve a decreased number of components based on the variation of measurements. Molecular markers and diagnostic ratios were examined to assign retained components to specific sources. The contributions of the sources were estimated by multivariate linear regression. Sources of aliphatic and PAHs hydrocarbons included primary particles from traffic (3.9 ng/m3 for alkanes and 240 pg/m3 for PAHs), evaporative fugitive (4.0 ng/m3 for alkanes and 93 pg/m3 for PAHs), and unburnt fuels and oil residues (1.1 ng/m3 for alkanes and 230 pg/m3 for PAHs). For the first time, we quantified the contribution of environmental tobacco smoke (ETS), which accounted for 5.2 ng/m3 of alkanes and 128 pg/m3 of PAHs. The findings of this study underlined the persistence of ETS and possible exposures to significant quantities of tobacco residues outdoors. Tobacco smoke is known to induce adverse respiratory and cardiovascular illnesses and increased risk for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycylic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114

    Article  CAS  Google Scholar 

  • Beddows DCS, Dall’Ostro M, Harrison RM (2009) Cluster analysis of rural, urban and curbside atmospheric particle size data. Environ Sci Technol 43:4694–4700

    Article  CAS  Google Scholar 

  • Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T et al (2002) Cancer risk assessment, indicators and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–488

    Article  CAS  Google Scholar 

  • Chalbot MC, Vei IC, Lykoudis S, Kavouras IG (2006) Particulate polycyclic aromatic hydrocarbons and n-alkanes in recycled paper processing operations. J Hazard Mater 137:742–751

    Article  CAS  Google Scholar 

  • Cyrys J, Heinrich J, Hoek G, Meliefste K, Lewne M, Gehring U et al (2003) Comparison between different traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. J Expo Anal Environ Epidemiol 13:134–143

    Article  CAS  Google Scholar 

  • Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149

    Article  CAS  Google Scholar 

  • Giannakopoulos C, Psiloglou BE (2006) Trends in energy load demand for Athens, Greece: weather and non-weather related factors. Clim Res 31:97–108

    Article  Google Scholar 

  • Gogou AI, Stratigakis N, Kanakidou M, Stephanou EG (1996) Organic aerosols in Eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories. Org Geochem 25:79–96

    Article  CAS  Google Scholar 

  • Kavouras IG, Stephanou EG (2002a) Particle size distribution of organic primary and secondary aerosol constituents in urban background marine and forest atmosphere. J Geophys Res Atmos 107:4069–4080

    Article  Google Scholar 

  • Kavouras IG, Stephanou EG (2002b) Gas/particle partitioning and size distribution of primary and secondary carbonaceous aerosol in public buildings. Indoor Air 12:17–32

    Article  CAS  Google Scholar 

  • Kavouras IG, Stratigakis N, Stephanou EG (1998) Iso and anteiso-alkanes: specific tracers of environmental tobacco smoke in indoor and outdoor particle-size distributed urban aerosols. Environ Sci Technol 32:1369–1377

    Article  CAS  Google Scholar 

  • Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Von Baer D, Oyola P (2001a) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol 35:2288–2294

    Article  CAS  Google Scholar 

  • Kavouras IG, Koutrakis P, Cereceda-Balic F, Oyola P (2001b) Source apportionment of PM10 and PM2.5 in five Chilean cities using factor analysis. J Air Waste Manag Assoc 51:451–464

    Article  CAS  Google Scholar 

  • Lianou M, Chalbot MC, Kavouras IG, Kotronatou A, Karakatsani A, Analytis A et al (2011) Temporal variations of particulate matter in four European urban areas. Environ Sci Pollut Res 18:1202–1212

    Article  CAS  Google Scholar 

  • Mandalakis M, Tsapakis M, Tsoga A, Stephanou EG (2002) Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos Environ 36:4023–4035

    Article  CAS  Google Scholar 

  • Mantis J, Chaloulakou A, Samara C (2005) PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the greater area of Athens, Greece. Chemosphere 59:593–604

    Article  CAS  Google Scholar 

  • Marple V, Rubow K, Turner W, Spengler J (1987) Low flow-rate sharp cut impactors for indoor air sampling—Design and calibration. J Air Pollut Control Assoc 37:1303–1307

    CAS  Google Scholar 

  • Puustinen A, Hameri K, Pekkanen J, Kulmala M, de Hartog J, Meliefste K et al (2007) Spatial variation of particle number and mass over four European cities. Atmos Environ 41:6622–6636

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosols: 1. Polycyclic aromatic hydrocarbons and methodology for data visualization. Environ Sci Technol 40:7803–7810

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann L, Mazurek MA, Cass GR, Simoneit BRT (1993a) Sources of fine organic aerosol: 2. Noncatalyst and catalyst equipped automobiles and heavy duty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann L, Mazurek MA, Cass GR, Simoneit BRT (1993b) Sources of fine organic aerosol: 3. Road dust tire debris and organometallic brake lining dust: Roads as sources and sinks. Environ Sci Technol 27:1892–1904

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann L, Mazurek MA, Cass GR, Simoneit BRT (1993c) Sources of fine organic aerosol: 4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Technol 27:2700–2711

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann L, Mazurek MA, Cass GR, Simoneit BRT (1994) Sources of fine organic aerosol: 6. Cigarette smoke in the urban atmosphere. Environ Sci Technol 28:1375–1388

    Article  CAS  Google Scholar 

  • Schauer J, Kleeman M, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180

    Article  CAS  Google Scholar 

  • Stathopoulos A, Karlaftis M (2001) Temporal and spatial variation of real-time traffic data in urban areas. Transp Res Rec 1768:135–140

    Article  Google Scholar 

  • Tsaknakis G, Papayannis A, Kokkalis P, Amiridis V, Kambezidis HD, Mamouri RE et al (2011) Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary layer profiling over Athens, Greece. Atmos Meas Tech 4:1261–1273

    Article  Google Scholar 

  • van Drooge BL, Ballesta PP (2009) Seasonal and daily source apportionment of polycyclic aromatic hydrocarbon concentrations in PM10 in a semirural European area. Environ Sci Technol 43:7310–7316

    Article  Google Scholar 

  • Vassilakos C, Levi N, Maggos T, Hatzianestis J, Michopoulos J, Helmis CG (2007) Gas-particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. J Hazard Mater 140:45–51

    Article  Google Scholar 

  • Wang Z, Fingas M, Shu Y, Sigouin L, Landriault M, Lambert P et al (1999) Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs—The 1994 Mobile Burn Study. Environ Sci Technol 33:3100–3109

    Article  CAS  Google Scholar 

  • Xia T, Korge P, Weiss JN (2004) Quinones and aromatic chemical compounds in particulate matter induced mitochondrial dysfunction: Implications for ultrafine particle toxicity. Environ Health Perspect 112:1347–1358

    Article  CAS  Google Scholar 

  • Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44:841–851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this study was provided by the EC Research DG Marie-Curie Individual Fellowship grant (Contract No. QLK4-CT-2002-51599) and the EC Quality of Life and management of Living Resources Program (Contract No. QLRT-2001000452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Chalbot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gini, M., Lianou, M., Chalbot, M.C. et al. Quantification of Environmental Tobacco Smoke Contribution on Outdoor Particulate Aliphatic and Polycyclic Aromatic Hydrocarbons. Arch Environ Contam Toxicol 64, 347–356 (2013). https://doi.org/10.1007/s00244-012-9844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9844-6

Keywords

Navigation