Skip to main content
Log in

Autocatalytic Sets and RNA Secondary Structure

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The dominant paradigm in origin of life research is that of an RNA world. However, despite experimental progress towards the spontaneous formation of RNA, the RNA world hypothesis still has its problems. Here, we introduce a novel computational model of chemical reaction networks based on RNA secondary structure and analyze the existence of autocatalytic sub-networks in random instances of this model, by combining two well-established computational tools. Our main results are that (i) autocatalytic sets are highly likely to exist, even for very small reaction networks and short RNA sequences, and (ii) sequence diversity seems to be a more important factor in the formation of autocatalytic sets than sequence length. These findings could shed new light on the probability of the spontaneous emergence of an RNA world as a network of mutually collaborative ribozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashkenasy G, Jegasia R, Yadav M, Ghadiri MR (2004) Design of a directed molecular network. PNAS 101(30):10872–10877

  • Bagley RJ, Farmer JD (1991) Spontaneous emergence of a metabolism. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison-Wesley, Redwood City, pp 93–140

  • Bagley RJ, Farmer JD, Fontana W (1991) Evolution of a metabolism. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison-Wesley, pp 141–158

  • Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261(5127):1411–1418

    Article  CAS  PubMed  Google Scholar 

  • Benner SA, Kim HJ, Yang Z (2012) Setting the stage: the history, chemistry, and geobiology behind RNA. Cold Spring Harb Perspect Biol 4(a003):541

    Google Scholar 

  • Farmer JD, Kauffman SA, Packard NH (1986) Autocatalytic replication of polymers. Phys D 22:50–67

    Article  Google Scholar 

  • Filisetti A, Graudenzi A, Serra R, Villani M, Lucrezia DD, Füchslin RM, Kauffman SA, Packard N, Poli I (2011) A stochastic model of the emergence of autocatalytic cycles. J Syst Chem 2:2

    Article  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Hayden EJ, Lehman N (2006) Self-assembly of a group I intron from inactive oligonucleotide fragments. Chem Biol 13:909–918

    Article  CAS  PubMed  Google Scholar 

  • Higgs PG, Lehman N (2015) The RNA world: molecular cooperation at the origins of life. Nat Rev Genet 16:7–17

    Article  CAS  PubMed  Google Scholar 

  • Hordijk W, Steel M (2004) Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J Theor Biol 227(4):451–461

    Article  CAS  PubMed  Google Scholar 

  • Hordijk W, Steel M (2013) A formal model of autocatalytic sets emerging in an RNA replicator system. J Syst Chem 4:3

    Article  CAS  Google Scholar 

  • Hordijk W, Steel M (2014) Conditions for evolvability of autocatalytic sets: a formal example and analysis. Orig Life Evol Biosph 44(2):111–124

    Article  CAS  PubMed  Google Scholar 

  • Hordijk W, Steel M (2017) Chasing the tail: the emergence of autocatalytic networks. BioSyst 152:1–10

    Article  CAS  Google Scholar 

  • Hordijk W, Steel M, Kauffman S (2012) The structure of autocatalytic sets: evolvability, enablement, and emergence. Acta Biotheor 60(4):379–392

    Article  PubMed  Google Scholar 

  • Hordijk W, Steel M, Kauffman S (2013) Autocatalytic sets: the origin of life, evolution, and functional organization. In: Pontarotti P (ed) Evolutionary biology: exobiology and evolutionary mechanisms. Springer, Berlin, pp 49–60

  • Hordijk W, Vaidya N, Lehman N (2014) Serial transfer can aid the evolution of autocatalytic sets. J Syst Chem 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hordijk W, Smith JI, Steel M (2015) Algorithms for detecting and analysing autocatalytic sets. Algorithms Mol Biol 10:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Horning DP, Joyce GF (2016) Amplification of RNA by an RNA polymerase ribozyme. PNAS 113:9786–9791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Krishna S (2001) A model for the emergence of cooperation, interdependence, and structure in evolving networks. PNAS 98(2):543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Krishna S (2002) Large extinctions in an evolutionary model: The role of innovation and keystone species. PNAS 99(4):2055–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (1971) Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems. J Cybernet 1(1):71–96

    Article  Google Scholar 

  • Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (1993) The origins of order. Oxford University Press, New York

  • Kim DE, Joyce GF (2004) Cross-catalytic replication of an RNA ligase ribozyme. Chem Biol 11:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Li L, Francklyn C, Carter CW (2013) Aminoacylating urzymes challenge the RNA world hypothesis. J Biol Chem 288:26856–26863

  • Lincoln TA, Joyce GE (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

  • Mossel E, Steel M (2005) Random biochemical networks: the probability of self-sustaining autocatalysis. J Theor Biol 233(3):327–336

    Article  CAS  PubMed  Google Scholar 

  • Nghe P, Hordijk W, Kauffman SA, Walker SI, Schmidt FJ, Kemble H, Yeates JAM, Lehman N (2015) Prebiotic network evolution: six key parameters. Mol BioSyst 11:3206–3217

    Article  CAS  PubMed  Google Scholar 

  • Polyansky AA, Hlevnjak M, Zagrovic B (2013) Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code. RNA Biol 10(8):1248–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  CAS  PubMed  Google Scholar 

  • Sievers D, von Kiedrowski G (1994) Self-replication of complementary nucleotide-based oligomers. Nature 369:221–224

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Steel M, Hordijk W (2014) Autocatalytic sets in a partitioned biochemical network. J Syst Chem 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa FL, Hordijk W, Steel M, Martin WF (2015) Autocatalytic sets in E. coli metabolism. J Syst Chem 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Steel M (2000) The emergence of a self-catalysing structure in abstract origin-of-life models. Appl Math Lett 3:91–95

    Article  Google Scholar 

  • Szostak JW (2012) The eightfold path to non-enzymatic RNA replication. J Syst Chem 3:2

    Article  CAS  Google Scholar 

  • Tanaka S, Fellermann H, Rasmussen S (2014) Structure and selection in an autocatalytic binary polymer model. EPL 107(28):004

    Google Scholar 

  • Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N (2012) Spontaneous network formation among cooperative RNA replicators. Nature 491:72–77

    Article  CAS  PubMed  Google Scholar 

  • Vasas V, Fernando C, Santos M, Kauffman S, Sathmáry E (2012) Evolution before genes. Biol Direct 7:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wills PR, Henderson L (2000) Self-organisation and information-carrying capacity of collectively autocatalytic sets of polymers: ligation systems. In: Bar-Yam Y (ed) Unifying themes in complex systems: proceedings of the first international conference on complex systems. Perseus Books, pp 613–623

Download references

Acknowledgements

The author thanks the KLI Klosterneuburg for financial support in the form of a fellowship, and two anonymous reviewers for helpful suggestions to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Hordijk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hordijk, W. Autocatalytic Sets and RNA Secondary Structure. J Mol Evol 84, 153–158 (2017). https://doi.org/10.1007/s00239-017-9787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-017-9787-7

Keywords

Navigation