Skip to main content
Log in

The Role of Microsatellites in Streptophyta Gene Evolution

  • Letters to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Microsatellites form hotspot regions for recombination. In this research, we investigated whether genic microsatellites can be responsible for generating new genes by enhancing crossover between gene containing microsatellites and other genomic regions. We tested our hypothesis on 33,531 UniGene entries containing microsatellites. Each sequence was divided into microsatellites upstream and downstream fragments, and each pair of sequences was compared to study the microsatellites effect. The candidate pairs of genes are supposed to share a high similar fragment in one side of the microsatellites, while the other fragments should be completely different. This in silico approach detected 448 valid pairs of sequences in which both of them showed semi-resemblance nature. The synteny analysis for the detected sequences against 55 plant genomes indicated low representation of them across plant kingdom. Our results will add a body of knowledge toward understanding the role of microsatellites in gene evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bacolla A et al (2008) Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. Genome Res 18:1545–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso-Moreira M, Long M (2012) The origin and evolution of new genes. In: Evolutionary genomics. Humana Press, New York, pp 161–186

    Chapter  Google Scholar 

  • Conesa A et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Zhou Q, Wang W (2012) Origins of new genes and evolution of their novel functions. Annu Rev Ecol Evol Syst 43:345–363

    Article  Google Scholar 

  • Jeffreys AJ et al (2004) Meiotic recombination hot spots and human DNA diversity. Philos Trans R Soc Lond B Biol Sci 359:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jighly A, Hamwieh A, Ogbonnaya FC (2011) Optimization of sequence alignment for simple sequence repeat regions. BMC Res Notes 4:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joly-Lopez Z, Forczek E, Hoen DR, Juretic N, Bureau TE (2012) A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet 8:e1002931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joukhadar R, Jighly A (2012) Microsatellites grant more stable flanking genes. BMC Res Notes 5:556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG (2009) More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 25:404–413

    Article  CAS  PubMed  Google Scholar 

  • Knowles DG, McLysaght A (2009) Recent de novo origin of human protein-coding genes. Genome Res 19:1752–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leclercq S, Rivals E, Jarne P (2010) DNA slippage occurs at microsatellite loci without minimal threshold length in humans: a comparative genomic approach. Genome Biol Evol 2:325–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci USA 103:9935–9939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long M, Betrán E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875

    Article  CAS  PubMed  Google Scholar 

  • Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques AC, Dupanloup I, Vinckenbosch N et al (2005) Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3:e357

    Article  PubMed  PubMed Central  Google Scholar 

  • Mau M et al (2013) The conserved chimeric transcript UPGRADE2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species. Plant Physiol 163:1640–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447:932–940

    Article  CAS  PubMed  Google Scholar 

  • Mondragon-Palomino M, Gaut BS (2005) Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 22:2444–2456

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Mrázek J, Guo X, Shah A (2007) Simple sequence repeats in prokaryotic genomes. Proc Natl Acad Sci USA 104:8472–8477

    Article  PubMed  PubMed Central  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. TRENDS in Genetics 17:619–621

    Article  CAS  PubMed  Google Scholar 

  • Rogers RL, Hartl DL (2012) Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol Biol Evol 29(2):517–529

    Article  CAS  PubMed  Google Scholar 

  • Rogers RL, Bedford T, Hartl DL (2009) Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster. Genetics 181:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sado PE et al (2009) Integrating genes and phenotype: a wheat–Arabidopsis–rice glycosyltransferase database for candidate gene analyses. Funct Integr Genom 9:43–58

    Article  CAS  Google Scholar 

  • Samuelson J et al (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA 102:1548–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Sorek R, Ast G, Graur D (2002) Alu-containing exons are alternatively spliced. Genome Res 12:1060–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada MA (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci USA 102:13705–13709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17:6563–6571

    Article  Google Scholar 

  • Tautz D, Domazet-Loso T (2011) The evolutionary origin of orphan genes. Nat Rev Genet 12:692–702

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    Article  CAS  PubMed  Google Scholar 

  • Toll-Riera M et al (2009) Origin of primate orphan genes: a comparative genomics approach. Mol Biol Evol 26:603–612

    Article  CAS  PubMed  Google Scholar 

  • Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zheng H, Fan C et al (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YE, Vibranovski MD, Krinsky BH, Long M (2010) Age-dependent chromosomal distribution of male-biased genes in Drosophila. Genome Res 20:1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Saelao P, Jones CD, Begun DJ (2014) Origin and spread of de novo genes in Drosophila melanogaster populations. Science 343(6172):769–772

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulqader Jighly.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jighly, A., Al-Abdallat, A.M. & Alnemer, L.M. The Role of Microsatellites in Streptophyta Gene Evolution. J Mol Evol 84, 144–148 (2017). https://doi.org/10.1007/s00239-016-9778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-016-9778-0

Keywords

Navigation