Skip to main content
Log in

When Competing Viruses Unify: Evolution, Conservation, and Plasticity of Genetic Identities

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In the early 1970s, Manfred Eigen and colleagues developed the quasispecies model (qs) for the population-based origin of RNAs representing the early genetic code. The Eigen idea is basically that a halo of mutants is generated by error-prone replication around the master fittest type which will behave similarly as a biological population. But almost from the start, very interesting and unexpected observations were made regarding competition versus co-operation which suggested more complex interactions. It thus became increasingly clear that although viruses functioned similar to biological species, their behavior was much more complex than the original theory could explain, especially adaptation without changing the consensus involving minority populations. With respect to the origin of natural codes, meaning, and code-use in interactions (communication), it also became clear that individual fittest type-based mechanisms were likewise unable to explain the origin of natural codes such as the genetic code with their context- and consortia-dependence (pragmatic nature). This, instead, required the participation of groups of agents competent in the code and able to edit code because natural codes do not code themselves. Three lines of inquiry, experimental virology, quasispecies theory, and the study of natural codes converged to indicate that consortia of co-operative RNA agents such as viruses must be involved in the fitness of RNA and its involvement in communication, i.e., code–competent interactions. We called this co-operative form quasispecies consortia (qs-c). They are the essential agents that constitute the possibility of evolution of biological group identity. Finally, the basic interactional motifs for the emergence of group identity, communication, and co-operation—together with its opposing functions—are explained by the “Gangen” hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anand SK, Griffiths MW (2003) Quorum sensing and expression of virulence in Escherichia coli O157:H7. Int J Food Microbiol 85:1–9

    CAS  PubMed  Google Scholar 

  • Archer EJ, Simpson MA, Watts NJ, O’Kane R, Wang B, Erie DA et al (2013) Long-range architecture in a viral RNA genome. Biochemistry 52:3182–3190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A et al (2009) The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5:e1000408

    PubMed Central  PubMed  Google Scholar 

  • Bapteste E, van Iersel L, Janke A, Kelchner S, Kelk S, McInerney JO et al (2013) Networks: expanding evolutionary thinking. Trends Genet 29:439–441

    CAS  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    CAS  PubMed  Google Scholar 

  • Barry G, Mattick JS (2012) The role of regulatory RNA in cognitive evolution. Trends Cogn Sci 16:497–503

    PubMed  Google Scholar 

  • Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson SA (2012) Cooperative tertiary interaction network guides RNA folding. Cell 149:348–357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berkhout B, Van Wamel JLB (2000) The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA 6:282–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bièche I, Laurent A, Laurendeau I, Duret L, Giovangrandi Y, Frendo J-L et al (2003) Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol Reprod 68:1422–1429

    PubMed  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457:977–980

    CAS  PubMed  Google Scholar 

  • Bondy-Denomy J, Davidson AR (2014) When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol 52:235–242

    CAS  PubMed  Google Scholar 

  • Briones C, Stich M, Manrubia SC (2009) The dawn of the RNA world: toward functional complexity through ligation of random RNA oligomers. RNA 15:743–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brüssow H (2009) The not so universal tree of life or the place of viruses in the living world. Philos Trans R Soc Lond B 364:2263–2274

    Google Scholar 

  • Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424

    CAS  PubMed  Google Scholar 

  • Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18

    CAS  PubMed  Google Scholar 

  • Carbonell A, Flores R, Gago S (2012) Hammerhead ribozymes against virus and viroid RNAs. In: Erdmann VA, Barciszewski J (eds) From nucleic acids sequences to molecular medicine. Springer, Berlin, Heidelberg, pp 411–427

    Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94

    CAS  PubMed  Google Scholar 

  • Chalopin D, Tomaszkiewicz M, Galians D, Volff JN (2012) LTR retroelement-derived protein-coding genes and vertebrate evolution. In: Witzany G (ed) Viruses: essential agents of life. Springer, Dordrecht, pp 269–282

    Google Scholar 

  • Chikova AK, Schaaper RM (2005) The bacteriophage P1 hot gene product can substitute for the Escherichia coli DNA polymerase III theta subunit. J Bacteriol 187:5528–5536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chuong EB, Rumi MAK, Soares MJ, Baker JC (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45:325–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conley AB, Jordan IK (2012) Endogenouis retroviruses and the epigenome. In: Witzany G (ed) Viruses: essential agents of life. Springer, Dordrecht, pp 309–323

    Google Scholar 

  • Cooper EL, Overstreet (2014) Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems. Phys Life Rev 11:113–134

    PubMed  Google Scholar 

  • Daly T, Chen XS, Penny D (2011) How old are RNA networks? In: Collins LJ (ed) RNA infrastructure and networks. Springer, New York, pp 255–273

    Google Scholar 

  • Dawkins R (2006) The selfish gene: 30th anniversary edition. Oxford University Press, Oxford

    Google Scholar 

  • Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dy RL, Przybilski R, Semeijn K, Salmond GPC, Fineran PC (2014) A widespread bacteriophage abortive infection system functions through a Type IV toxin–antitoxin mechanism. Nucleic Acids Res 42:4590–4605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar R, Qimron U (2010) The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J Bacteriol 192:6291–6294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    CAS  PubMed  Google Scholar 

  • Eigen M (1993) Viral quasispecies. Sci Am 269:42–49

    CAS  PubMed  Google Scholar 

  • Eigen M (2013) From strange simplicity to complex familiarity: a treatise on matter, information, life and thought. Oxford University Press, Oxford

    Google Scholar 

  • Eigen M, Schuster P (1977) The hypercyde. A principle of natural self-organization. Naturwissenschaften 64:541–565

    CAS  PubMed  Google Scholar 

  • Eigen M, Winkler R (1983) The Laws of the game: how the principles of nature govern chance. Princeton University Press, Princeton

    Google Scholar 

  • Emera D, Wagner GP (2012) Transposable element recruitments in the mammalian placenta: impacts and mechanisms. Brief Funct Genomics 11:267–276

    CAS  PubMed  Google Scholar 

  • Ferretti AC, Joyce G (2013) Kinetic properties of an RNA enzyme that undergoes self-sustained exponential amplification. Biochemistry 52:1227–1235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA 106:894–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flores R, Gago-Zachert S, Serra P, Sanjuan R, Elena SF (2014) Viroids: survivors from the RNA world? Annu Rev Microbiol 68:395–414

    CAS  PubMed  Google Scholar 

  • Forterre P, Prangishvili D (2009) The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci 1178:65–77

    CAS  PubMed  Google Scholar 

  • Garcia-Contreras R, Zhang XS, Kim Y, Wood TK (2008) Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS ONE 3(6):e2394

    PubMed Central  PubMed  Google Scholar 

  • Garrett RA, Vestergaard G, Shah SA (2011) Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 19:549–556

    CAS  PubMed  Google Scholar 

  • Gazit E, Sauer RT (1999) Stability and DNA binding of the phd protein of the phage P1 plasmid addiction system. J Biol Chem 274:2652–2657

    CAS  PubMed  Google Scholar 

  • Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5(1):e00928–13

    PubMed Central  PubMed  Google Scholar 

  • Guo P, Cheng Q, Xie P, Fan Y, Jiang W, Qin Z (2011) Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin 43:630–639

    CAS  PubMed  Google Scholar 

  • Gwiazda S, Salomon K, Appel B, Muller S (2012) RNA self-ligation: From oligonucleotides to full length ribozymes. Biochimie 94:1457–1463

    CAS  PubMed  Google Scholar 

  • Harish A, Caetano-Anollés G (2012) Ribosomal history reveals origins of modern protein synthesis. PLoS ONE 7:e32776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris JR (1998) Placental endogenous retrovirus (ERV): structural, functional, and evolutionary significance. BioEssays 20:307–316

    CAS  PubMed  Google Scholar 

  • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayden EJ, Lehman N (2006) Self-assembly of a group i intron from inactive oligonucleotide fragments. Chem Biol 13:909–918

    CAS  PubMed  Google Scholar 

  • Hazan R, Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 272:227–234

    CAS  PubMed  Google Scholar 

  • Hazan R, Sat B, Reches M, Engelberg-Kulka H (2001) Postsegregational killing mediated by the P1 phage “addiction module” phd-doc requires the Escherichia coli programmed cell death system mazEF. J Bacteriol 183:2046–2050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karginov FV, Hannon GJ (2010) The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 37:7–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Wang X, Ma Q, Zhang XS, Wood TK (2009) Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 191:1258–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koonin EV (2011) The logic of chance: the nature and origin of biological evolution. FT Press, Upper Saddle River

    Google Scholar 

  • Koonin EV, Dolja VV (2014) Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 78:278–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koonin EV, Krupovic M (2014) Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet. doi:10.1038/nrg3859

    PubMed  Google Scholar 

  • Lawrence CM, Menon S, Eilers BJ, Bothner B, Khayat R, Douglas T, Young MJ (2009) Structural and functional studies of archaeal viruses. J Biol Chem 284:12599–12603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23:862–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehnherr H, Yarmolinsky MB (1995) Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc Natl Acad Sci USA 92:3274–3277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB (1993) Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J Mol Biol 233:414–428

    CAS  PubMed  Google Scholar 

  • Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L, Chenchik AA et al (2013) p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci 110:E89–E98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lillestøl RK, Redder P, Garrett RA, Brügger K (2006) A putative viral defence mechanism in archaeal cells. Archaea 2:59–72

    PubMed Central  PubMed  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43:1154–1159

    CAS  PubMed  Google Scholar 

  • Lynch VJ, Nnamani M, Brayer KJ, Emera D, Wertheim JO, Pond SLK, et al. (2012) Lineage-specific transposons drove massive gene expression recruitments during the evolution of pregnancy in mammals. arXiv: 1208.4639. http://arxiv.org/abs/1208.4639. Accessed 18 Dec 2012

  • Magnuson R, Lehnherr H, Mukhopadhyay G, Yarmolinsky MB (1996) Autoregulation of the plasmid addiction operon of bacteriophage P1. J Biol Chem 271:18705–18710

    CAS  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585:1600–1616

    CAS  PubMed  Google Scholar 

  • Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18:1611–1630

    CAS  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 1:R17–29

    Google Scholar 

  • McGinness KE, Wright MC, Joyce GF (2002) Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactions. Chem Biol 9:585–596

    CAS  PubMed  Google Scholar 

  • Miller WA, White KA (2006) Long-distance RNA-RNA interactions in plant virus gene expression and replication. Ann Rev Phytopathol 44:447–467

    CAS  Google Scholar 

  • Mochizuki T, Sako Y, Prangishvili D (2011) Provirus induction in hyperthermophilic archaea: characterization of aeropyrum pernix spindle-shaped virus 1 and aeropyrum pernix ovoid virus 1. J Bacteriol 193:5412–5419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moelling K (2013) What contemporary viruses tell us about evolution: a personal view. Arch Virol 158:1833–1848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    CAS  PubMed  Google Scholar 

  • Moons P, Werckx W, Van Houdt R, Aertsen A, Michiels CW (2006) Resistance development of bacterial biofilms against bacteriophage attack. Commun Agric Appl Biol Sci 71:297–300

    CAS  PubMed  Google Scholar 

  • Muller S, Appel B, Krellenberg T, Petkovic S (2012) The many faces of the hairpin ribozyme: Structural and functional variants of a small catalytic RNA. IUBMB Life 64:36–47

    PubMed  Google Scholar 

  • Nakagawa S, Bai H, Sakurai T, Nakaya Y, Konno T, Miyazawa T et al (2013) Dynamic evolution of endogenous retrovirus-derived genes expressed in bovine conceptuses during the period of placentation. Genome Biol Evol 5:296–306

    PubMed Central  PubMed  Google Scholar 

  • Nicolas FE, Torres-Martinez S, Ruiz-Vazquez RM (2013) Loss and retention of RNA interference in fungi and parasites. PLoS Pathog 9(1):e1003089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B, Kurokawa K et al (2011) CRISPR inhibition of prophage acquisition in streptococcus pyogenes. PLoS ONE 6(5):e19543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogura Y, Ooka T, Asadulghani M, Terajima J, Nougayrede JP, Kurokawa K et al (2007) Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 8:R138

    PubMed Central  PubMed  Google Scholar 

  • Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103:17973–17978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliver KR, Greene WK (2011) Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mob DNA 2:8–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliver KR, Greene WK (2012) Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2:2912–2933

    PubMed Central  PubMed  Google Scholar 

  • Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, Terajima J et al (2009) Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 19:1809–1816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortmann AC, Wiedenheft B, Douglas T, Young M (2006) Hot crenarchaeal viruses reveal deep evolutionary connections. Nat Rev Microbiol 4:520–528

    CAS  PubMed  Google Scholar 

  • Palmer KL, Whiteley M (2011) DMS3-42: The secret to CRISPR-dependent biofilm inhibition in Pseudomonas aeruginosa. J Bacteriol 193:3431–3432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perot P, Bolze PA, Mallet F (2012) From viruses to genes: syncytins. In: Witzany G (ed) Viruses: essential agents of life. Springer, Dordrecht, pp 325–361

    Google Scholar 

  • Pheasant M, Mattick JS (2007) Raising the estimate of functional human sequences. Genome Res 17:1245–1253

    CAS  PubMed  Google Scholar 

  • Prangishvili D (2013) The wonderful world of archaeal viruses. Ann Rev Microbiol 67:565–585

    CAS  Google Scholar 

  • Qureshi IA, Mehler MF (2009) Regulation of non-coding RNA networks in the nervous system–what’s the REST of the story? Neurosci Lett 466:73–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13:528–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redfield RJ, Campbell AM (1984) Origin of cryptic lambda prophages in Escherichia coli K-12. Cold Spring Harb Symp Quant Biol 49:199–206

    CAS  PubMed  Google Scholar 

  • Rohwer F (2014) Life in our phage world. San Diego, Wholon

    Google Scholar 

  • Roossinck MJ (2015) Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front Microbiol 5:1–3

    Google Scholar 

  • Ryan F (2009) Virolution. Collins, London

    Google Scholar 

  • Shapiro JA (2005) Retrotransposons and regulatory suites. BioEssays 27:122–125

    CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    CAS  PubMed  Google Scholar 

  • Snyder JC, Brumfield SK, Kerchner KM, Quax TEF, Prangishvili D, Young MJ (2013) Insights into a viral lytic pathway from an archaeal virus-host system. J Virol 87:2186–2192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szathmary E, Demeter L (1987) Group selection of early replicators and the origin of life. J Theor Biol 128:463–486

    CAS  PubMed  Google Scholar 

  • Takagi H, Kakuta Y, Okada T, Yao M, Tanaka I, Kimura M (2005) Crystal structure of archaeal toxin-antitoxin RelE–RelB complex with implications for toxin activity and antitoxin effects. Nat Struct Mol Biol 12:327–331

    CAS  PubMed  Google Scholar 

  • Tomasello M (2014) A natural history of human thinking. Havard University Press, Cambridge

    Google Scholar 

  • Touchon M, Charpentier S, Clermont O, Rocha EP, Denamur E, Branger C (2011) CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J Bacteriol 193:2460–2467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tyndall C, Lehnherr H, Sandmeier U, Kulik E, Bickle TA (1997) The type IC hsd loci of the enterobacteria are flanked by DNA with high homology to the phage P1 genome: implications for the evolution and spread of DNA restriction systems. Mol Microbiol 23:729–736

    CAS  PubMed  Google Scholar 

  • Vaidya N (2012) Spontaneous Cooperative Assembly of Replicative Catalytic RNA Systems. Dissertations and Theses. http://pdxscholar.library.pdx.edu/open_access_etds/934

  • Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N (2012) Spontaneous network formation among cooperative RNA replicators. Nature 491:72–77

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM Press, Washington

    Google Scholar 

  • Villarreal LP (2009a) Origin of group identity. Viruses, addiction and co-operation. Springer, New York

    Google Scholar 

  • Villarreal LP (2009b) Persistence pays: how viruses promote host group survival. Curr Opin Microbiol 12:467–472

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2009c) The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 1178:194–232

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2011a) Viral ancestors of antiviral systems. Viruses 3:1933–1958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villarreal L (2011b) Viruses and host evolution: virus-mediated self identity. In: Lopez-Larrea C (ed) Self and Non-Self. Landes Bioscience and Springer Science+Business Media, Austin, pp 185–217

    Google Scholar 

  • Villarreal LP (2012) The addiction module as a social force. In: Witzany G (ed) Viruses: essential agents of life. Springer Science+Business Media, Dordrecht, pp 107–145

    Google Scholar 

  • Villarreal LP (2014) Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann N Y Acad Sci. doi:10.1111/nyas.12565

    PubMed  Google Scholar 

  • Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262:698–710

    PubMed  Google Scholar 

  • Villarreal LP, Witzany G (2013a) The DNA habitat and its RNA inhabitants: at the dawn of RNA sociology. Genomics Insights 6:1–12

    Google Scholar 

  • Villarreal LP, Witzany G (2013b) Rethinking quasispecies theory: from fittest type to cooperative consortia. World J Biol Chem 4:71–82

    Google Scholar 

  • Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M et al (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104:18613–18618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147

    PubMed Central  PubMed  Google Scholar 

  • Weinbauer RG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    PubMed  Google Scholar 

  • Witzany G (1995) From the „logic of the molecular syntax“to molecular pragmatism. Explanatory deficits in Manfred Eigen’ s concept of language and communication. Evol Cog 1:148–168

    Google Scholar 

  • Witzany G (2006) Serial endosymbiotic theory (set): the biosemiotic update. Acta Biotheor 54:103–117

    PubMed  Google Scholar 

  • Witzany G (2007) From biosphere to semiosphere to social lifeworlds. Biology as an understanding social science. In: Barbieri M (ed) Biosemiotic research trends. Nova Science Publishers, New York, pp 185–213

    Google Scholar 

  • Witzany G (2014) Pragmatic turn in biology: from biological molecules to genetic content operators. World J Biol Chem 5:279–285

    PubMed Central  PubMed  Google Scholar 

  • Witzany G (2015a) Life is physics and chemistry and communication. Ann N Y Acad Sci 1341:1–9

    CAS  PubMed  Google Scholar 

  • Witzany G (2015) (ed) The DNA habitats and their RNA inhabitants, vol 1341. New York Academy of Sciences, New York

  • Woese C (2004) A new biology for a new century. Microbiol Mol Biol Rev 68:173–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood TK (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11:1–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Kim J, Zhang C, Zhang M, Nietfeldt J, Southward CM et al (2009) Genomic instability in regions adjacent to highly conserved pch prophage in E. coli O157:H7 generates diversity in expression patterns of the LEE pathogenicity island. J Bacteriol 191:3553–3568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarmolinsky MB (2004) Bacteriophage P1 in retrospect and in prospect. J Bacteriol 186:7025–7028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarus M (2011) The meaning of a minuscule ribozyme. Philos Trans R Soc Lond B 366:2902–2909

    CAS  Google Scholar 

  • Youle M, Haynes M, Rohwer F (2012) Scratching the surface of biology’s dark matter. In: Witzany G (ed) Viruses: essential agents of life. Springer, Dordrecht, pp 61–81

    Google Scholar 

  • Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O’Toole GA (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 191:210–219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zemojtel T, Kielbasa SM, Arndt PF, ChungHR Vingron M (2009) Methylation and deamination of CpGs generate p53-binding sites on a genomic scale. Trends Genet 25:63–66

    CAS  PubMed  Google Scholar 

  • Zhang Z, Liu Y, Wang S, Yang D, Cheng Y, Hu J et al (2012) Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 434:233–241

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Witzany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarreal, L.P., Witzany, G. When Competing Viruses Unify: Evolution, Conservation, and Plasticity of Genetic Identities. J Mol Evol 80, 305–318 (2015). https://doi.org/10.1007/s00239-015-9683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-015-9683-y

Keywords

Navigation