Skip to main content
Log in

Evolution of the ABPA Subunit of Androgen-Binding Protein Expressed in the Submaxillary Glands in New and Old World Rodent Taxa

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The salivary androgen-binding proteins (ABPs) are members of the secretoglobin gene family present in mammals. Each ABP is a heterodimer assembled as an ABPA subunit encoded by an Abpa gene and linked by disulfide bridges to an ABPBG subunit encoded by an Abpbg gene. The ABP dimers are secreted into the saliva of mice and then transferred to the pelage after grooming and subsequently to the environment allowing an animal to mark territory with a biochemical signal. The putative role of the mouse salivary ABPs is that of pheromones mediating mate selection resulting in assortative mating in the Mus musculus species complex. We focused on comparing patterns of molecular evolution between the Abpa genes expressed in the submaxillary glands of species of New World and Old World muroids. We found that in both sets of rodents the Abpa genes expressed in the submaxillary glands appear to be evolving under a similar evolutionary regime, with relatively high nonsynonymous substitution rates, suggesting that ABP might play a similar biological role in both systems. Thus, ABP could be involved with mate recognition and species isolation in New World as well as Old World muroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  CAS  Google Scholar 

  • Bímová B, Karn RC, Piálek J (2005) The role of salivary androgen-binding protein in reproductive isolation between two subspecies of house mouse: Mus musculus musculus and Mus musculus domesticus. Biol J Linn Soc 84:349–361

    Article  Google Scholar 

  • Bímová BV, Macholán M, Baird SJE, Munclinger P, Dufková P, Laukaitis CM, Karn RC, Luzynski K, Tucker PK, Piálek J (2011) Reinforcement selection acting on the European house mouse hybrid zone. Mol Ecol 20:2403–2424

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Dlouhy SR, Nichols WC, Karn RC (1986) Production of an antibody to mouse salivary androgen binding protein (ABP) and its use in identifying a prostate protein produced by a gene distinct from Abp. Biochem Genet 24:743–763

    Article  PubMed  CAS  Google Scholar 

  • Dlouhy SR, Taylor BA, Karn RC (1987) The genes for mouse salivary androgen-binding protein (ABP) subunits alpha and gamma are located on chromosome 7. Genetics 115:535–543

    PubMed  CAS  Google Scholar 

  • Duret L, Mouchiroud D (2000) Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 17:68–74

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Emes RD, Riley MC, Laukaitis CM, Goodstadt L, Karn RC, Ponting CP (2004) Comparative evolutionary genomics of androgen-binding protein genes. Genome Res 14:1516–1529

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hwang JM, Hofstetter JR, Bonhomme F, Karn R (1997) The microevolution of mouse salivary androgen-binding protein (ABP) paralleled subspeciation of Mus musculus. J Hered 88:93–97

    Article  PubMed  CAS  Google Scholar 

  • Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phylogenet Evol 31:256–276

    Article  PubMed  CAS  Google Scholar 

  • Jobb G, Von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed  Google Scholar 

  • Karn RC, Dlouhy SR (1991) Salivary androgen-binding protein variation in Mus and other rodents. J Hered 82:453–458

    PubMed  CAS  Google Scholar 

  • Karn RC, Laukaitis CM (2003) Characterization of two forms of mouse salivary androgen-binding protein (ABP): implications for evolutionary relationships and ligand-binding function. Biochemistry 42:7162–7170

    Article  PubMed  CAS  Google Scholar 

  • Karn RC, Laukaitis CM (2009) The mechanism of expansion and the volatility it created in three pheromone gene clusters in the mouse (Mus musculus) genome. Genome Biol Evol 1:494–503

    Article  PubMed  Google Scholar 

  • Karn RC, Nachman MW (1999) Reduced nucleotide variability at an androgen-binding protein locus (Abpa) in house mice: evidence for positive natural selection. Mol Biol Evol 16:1192–1197

    Article  PubMed  CAS  Google Scholar 

  • Karn RC, Orth A, Bonhomme F, Boursot P (2002) The complex history of a gene proposed to participate in a sexual isolation mechanism in house mice. Mol Biol Evol 19:462–471

    Article  PubMed  CAS  Google Scholar 

  • Karn RC, Young JM, Laukaitis CM (2010) A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus. PLoS One 5:e12638

    Article  PubMed  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  • Kelly LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  Google Scholar 

  • Klug J, Beier HM, Bernard A, Chilton BS, Fleming TP, Lehrer RI, Miele L, Pattabiraman N, Singh G (2000) Uteroglobin/Clara cell 10-kDa family of proteins: nomenclature committee report. Ann N Y Acad Sci 923:348–354

    Article  PubMed  CAS  Google Scholar 

  • Kosiol C, Vinař T, Da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A (2008) Patterns of positive selection in six mammalian genomes. PLoS Genet 4:e1000144

    Article  PubMed  Google Scholar 

  • Laukaitis CM, Karn RC (2005) Evolution of the secretoglobins: a genomic and proteomic view. Biol J Linn Soc 84:493–501

    Article  Google Scholar 

  • Laukaitis CM, Critser ES, Karn RC (1997) Salivary androgen-binding protein (ABP) mediates sexual isolation in Mus musculus. Evolution 51:2000–2005

    Article  CAS  Google Scholar 

  • Laukaitis CM, Dlouhy SR, Emes RD, Ponting CP, Karn RC (2005) Diverse spatial, temporal, and sexual expression of recently duplicated androgen-binding protein genes in Mus musculus. BMC Evol Biol 5:40

    Article  PubMed  Google Scholar 

  • Laukaitis CM, Heger A, Blakley TD, Munclinger P, Ponting CP, Karn RC (2008) Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals. BMC Evol Biol 8:46

    Article  PubMed  Google Scholar 

  • Laukaitis CM, Mauss C, Karn RC (2012) Congenic strain analysis reveals genes that are rapidly evolving components of a prezygotic isolation mechanism mediating incipient reinforcement. PLoS One 7:e35898

    Article  PubMed  CAS  Google Scholar 

  • Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102:10557–10562

    Article  PubMed  Google Scholar 

  • Mukherjee AB, Chilton BS (2000) The uteroglobin/Clara cell protein family. Ann N Y Acad Sci 923:1–358

    Google Scholar 

  • Park SH, Podlaha O, Grus WE, Zhang J (2011) The microevolution of V1r vomeronasal receptor genes in mice. Genome Biol Evol 3:401–412

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Sander C (1994) Conservation and prediction of solvent accessibility in protein families. Proteins Struct Funct Bioinform 20:216–226

    Article  CAS  Google Scholar 

  • Shi P, Zhang J (2009) Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates. Results Probl Cell Differ 47:1–23

    PubMed  CAS  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    Article  PubMed  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553

    Article  PubMed  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Wong A, Wolfner MF, Aquadro CF (2004) Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Talley HM, Laukaitis CM, Karn RC (2001) Female preference for male saliva: implications for sexual isolation of Mus musculus subspecies. Evolution 55:631–634

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Torgerson DG, Kulathinal RJ, Singh RS (2002) Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol Biol Evol 19:1973–1980

    Article  PubMed  CAS  Google Scholar 

  • Wickliffe JK, Lee VH, Smith E, Tandler B, Phillips CJ (2002) Gene expression, cell localization, and evolution of rodent submandibular gland androgen-binding protein. Eur J Morphol 40:257–260

    PubMed  CAS  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Baker, R. Chesser, B. Rodgers, M. Bondarkov, and S. Gaschak for access to collecting sites in northern Ukraine as part of another research project. We also want to thank two anonymous reviewers whose comments and suggestions greatly improved the quality of this manuscript. All field and laboratory studies were conducted with appropriate permits and approved institutional protocols and in accord with the NIH Guidelines for the Care and Use of Laboratory Animals. Research was partially funded by Texas Tech University funding to CJP and directed funding for the DOE (C. J. Phillips, R. Chesser, R. Baker, co-PIs). FGH acknowledges Grant support from the National Science Foundation (EPS-0903787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico G. Hoffmann.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandewege, M.W., Phillips, C.J., Wickliffe, J.K. et al. Evolution of the ABPA Subunit of Androgen-Binding Protein Expressed in the Submaxillary Glands in New and Old World Rodent Taxa. J Mol Evol 76, 324–331 (2013). https://doi.org/10.1007/s00239-013-9561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9561-4

Keywords

Navigation