Skip to main content
Log in

Rapid Evolution by Positive Selection and Gene Gain and Loss: PLA2 Venom Genes in Closely Related Sistrurus Rattlesnakes with Divergent Diets

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Rapid evolution of snake venom genes by positive selection has been reported previously but key features of this process such as the targets of selection, rates of gene turnover, and functional diversity of toxins generated remain unclear. This is especially true for closely related species with divergent diets. We describe the evolution of PLA2 gene sequences isolated from genomic DNA from four taxa of Sistrurus rattlesnakes which feed on different prey. We identified four to seven distinct PLA2 sequences in each taxon and phylogenetic analyses suggest that these sequences represent a rapidly evolving gene family consisting of both paralogous and homologous loci with high rates of gene gain and loss. Strong positive selection was implicated as a driving force in the evolution of these protein coding sequences. Exons coding for amino acids that make up mature proteins have levels of variation two to three times greater than those of the surrounding noncoding intronic sequences. Maximum likelihood models of coding sequence evolution reveal that a high proportion (∼30%) of all codons in the mature protein fall into a class of codons with an estimated d N /d S (ω) ratio of at least 2.8. An analysis of selection on individual codons identified nine residues as being under strong (p < 0.01) positive selection, with a disproportionately high proportion of these residues found in two functional regions of the PLA2 protein (surface residues and putative anticoagulant region). This is direct evidence that diversifying selection has led to high levels of functional diversity due to structural differences in proteins among these snakes. Overall, our results demonstrate that both gene gain and loss and protein sequence evolution via positive selection are important evolutionary forces driving adaptive divergence in venom proteins in closely related species of venomous snakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brunie S, Bolin J, Gewirth D et al (1985) The refined crystal structure of dimeric phospholipase A2 at 25 Å. J Biol Chem 260:9742–9749

    PubMed  CAS  Google Scholar 

  • Carredano E, Westerlund B, Persson B et al (1998) The threedimensional structures of two toxins from snake venom throw light on the anticoagulant and neurotoxic sites of phospholipase A2. Toxicon 36:75–92

    Article  PubMed  CAS  Google Scholar 

  • Cereb N, Hughes AL, Yang SY (1997) Locus-specific conservation of the HLA class I introns by intra-locus homogenization. Immunogenetics 47:30–36

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wang Y, Hseu M et al (2004) Molecular evolution and structure-function relationships of crototoxin-like and asparagines-6-containing phosphlolipase A2 in pit viper venoms. Biochem J 381:25–34

    Article  PubMed  CAS  Google Scholar 

  • Chijiwa T, Deshimaru M, Nobuhisha I et al (2000) Regional evolution of venom-gland phospholipase A2 isoenzymes of Trimeresurus flavoviridis snakes in the southwestern islands of Japan. Biochem J 347:491–499

    Article  PubMed  CAS  Google Scholar 

  • Chijiwa T, Yamaguchi Y, Ogawa T et al (2003) Interisland evolution of Trimeresurus flavoviridis venom phospholipase A2 isozymes. J Mol Evol 56:286–293

    Article  PubMed  CAS  Google Scholar 

  • Conant R, Collins JT (1998) A field guide to reptiles & amphibians of eastern & central North America. 3rd ed. Houghton Mifflin, New York

    Google Scholar 

  • Cotton JA, Page RDM (2005) Rates and patterns of gene duplication and loss in the human genome. Proc Roy Soc Lond 272:277–283

    Article  CAS  Google Scholar 

  • Creer S, Malhotra A, Thorpe RS, et al (2003) Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and isoelectric focusing. J Mol Evol 56:317–329

    Article  PubMed  CAS  Google Scholar 

  • Daltry JC, Wuster W, Thorpe RS (1996) Diet and snake venom evolution. Nature 379:537–540

    Article  PubMed  CAS  Google Scholar 

  • Danse JM, Gasparini S, Menez A (1997) Molecular biology of snake venom phospholipase A2. In: Kini RM (ed) Venom phospholipse A2 enzymes: structure, function, and mechanism. J. Wiley and Sons, Chichester, UK, pp 29–71

    Google Scholar 

  • Demuth JP, Bie TD, Stajich JE et al (2006) The evolution of mammalian gene families. PLoS ONE 1:e85 doi:101371/journal.pone.0000085

  • Douglas ME, Douglas MR, Schuett GW et al (2006) Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Mol Ecol 15:3353–3374

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Mitchell-Olds T (2003) Evolutionary and ecological functional genomics. Nature Rev Genet 4:649–655

    Article  CAS  Google Scholar 

  • Fry BG (2005) From genome to ‘venome’: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 15:403–420

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Wüster W (2004) Assembling an arsenal: origin and evolution ofthe snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 21:870–883

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Wüster W, Kini RM et al (2003) Molecular evolution of elapid snake venom three finger toxins. J Mol Evol 57:110–129

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Vidal N, Norman JA et al (2006) Early evolution of the venom system in lizards and snakes. Nature 439:584–588

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Google Scholar 

  • Gillespie JH (1994). The causes of molecular evolution. Oxford University Press, Oxford

    Google Scholar 

  • Golding GB, Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15:355–369

    PubMed  CAS  Google Scholar 

  • Gubensek F, Kordis D (1997) Venom phospholipase A2 genes and their molecular evolution. In: Kini RM (ed) Venom phospholipse A2 enzymes: structure, function, and mechanism. J. Wiley and Sons, Chichester, UK, pp 73–95

    Google Scholar 

  • Hasegawa M, Kishino H (1989) Confidence limits on the maximum-likelihood estimate of the hominoid tree from mitochondrial-DNA sequences. Evolution 43:627–677

    Article  Google Scholar 

  • Heatwole H, Powell J (1998) Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution. Toxicon 36:619–625

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra HE, Coyne J (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016

    Article  PubMed  Google Scholar 

  • Holycross AT, Mackessey SP (2002) Variation in the diet of Sistrurus catenatus (massasauga) with emphasis on Sistrurus catenatus edwardsii (desert massasauga). J Herpetol 36:454–464

    Google Scholar 

  • Hughes AL, Yeager M (1997) Comparative evolutionary rates of introns and exons in murine rodents. J Mol Evol 45:125–130

    Article  PubMed  CAS  Google Scholar 

  • John TR, Smith L, Kaiser I (1994) Genomic sequences encoding the acidic and basic subunits of Mojave toxin:unusually high sequence identity of non-coding regions. Gene 139:229–234

    Article  PubMed  CAS  Google Scholar 

  • Jorge da Silva NJ, Aird SD (2001) Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 128:425–456

    Article  PubMed  Google Scholar 

  • Junqueira-de-Azevedo ILM, Ho PL (2002) A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene 299:279–291

    Article  CAS  Google Scholar 

  • Junqueira-de-Azevedo ILM, Ching ATC, Carvalho E et al (2006) Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of Cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 173:877–889

    Article  PubMed  CAS  Google Scholar 

  • Kini RM, ed. (1997) Venom phospholipase A2 enzymes: structure, function, and mechanism. J. Wiley and Sons, Chichester, UK

    Google Scholar 

  • Kini RM (2003) Excitement ahead: structure, function, and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42:827–840

    Article  PubMed  CAS  Google Scholar 

  • Kini RM (2005) Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 45:1147–1161

    Article  PubMed  CAS  Google Scholar 

  • Kini RM, Chan YM (1999) Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. J Mol Evol 48:125–132

    Article  PubMed  CAS  Google Scholar 

  • Kini RM, Evans HJ (1989) A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 27:613–635

    Article  PubMed  CAS  Google Scholar 

  • Kordis D, Bdolah A, Gubensek F (1998) Positive Darwinian selection in Vipera palestinae phospholipase genes is unexpectantly limited to the third exon. Biochem Biophys Res Commun 251:613–619

    Article  PubMed  CAS  Google Scholar 

  • Kordis D, Krizaj I, Gubensek F (2002) Funtional diversification of animal toxins by adaptive evolution. In: Menez A (ed) Perspectives in molecular toxinology. J. Wiley and Sons, New York, pp 401–419

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Li M, Fry BG, Kini RM (2005) Eggs only diet: the shift in preferred prey by the marbled sea snake (Aipysurus eydouxii) resulting in a loss of postsynaptic neurotoxicity. J Mol Evol 60:81–9

    Article  PubMed  CAS  Google Scholar 

  • Li M, Fry BG, Kini RM (2005) Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (marbled sea snake) phospholipase A2 toxins. Mol Biol Evol 22:934–941

    Article  PubMed  CAS  Google Scholar 

  • Lomonte B, Moreno E, Tarkowski A et al (1994) Neutralizing interaction between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. Identification of a heparin-binding and cytolytic toxin region by the use of synthetic peptides and molecular modeling. J Biol Chem 269:29867–29873

    PubMed  CAS  Google Scholar 

  • Lynch VJ (2007) Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol Biol 7:2

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 293:1151–1155

    Article  Google Scholar 

  • Lynch M, Conery JS (2003) The evolutionary demography of duplicate genes. J Struct Funct Genom 3:35–44

    Article  CAS  Google Scholar 

  • Menez A (2002) Perspectives in molecular toxinology. J. Wiley & Sons, New York

    Google Scholar 

  • Metz EC, Robles-Sikisaka R, Vacquier VD (1998) Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA. Proc Natl Acad Sci USA 95:10676–10681

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Nobuhisa I, Deshimaru M et al (1993) Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipase A2 isozymes. Proc Natl Acad Sci USA 90:5964–5968

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Nobuhisa I, Deshimaru M et al (1995) Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc Natl Acad Sci USA 92:5605–5609

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Nobuhisa I, Nakashima K, Deshimaru M et al (1996) Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes. Gene 172:267–272

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Chijiwa T, Oda-Ueda N et al (2003) Molecular evolution of myotixic phospholipases A2 from snake venom. Toxicon 42:841–854

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1998). GeneTree:comparing gene and species phylogenies using reconciled trees. Bioinformatics 14:819–820

    Article  PubMed  CAS  Google Scholar 

  • Peitsch MC (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24:274–279

    PubMed  CAS  Google Scholar 

  • Petan T, Krizaj I, Gubensek F et al (2002) Phenylalanine-24 in the N-terminal region of ammodytoxins is important for both enzymic activity and presynaptic toxicity. Biochem. J 363:353–358

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Prijatelj P, Copic A, Krizaj I et al (2000) Charge reversal of ammodytoxin A, a phospholipase A2-toxin, does not abolish its neurotoxicity. Biochem J 352:251–255

    Article  PubMed  CAS  Google Scholar 

  • Prijatelj P, Krizaj I, Kralj B et al (2002) The C-terminal region of ammodytoxins is important but not sufficient for neurotoxicity. Eur J Biochem 269:5759–5764

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio J C, Messeguer X et al (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Samanta U, Bahadur RP, Chakrabarti P (2002) Quantifying the accessible surface area of protein residues in their local environment. Protein Eng 15:659–667

    Article  PubMed  CAS  Google Scholar 

  • Sanz L, Gibbs HL, Mackessy SP et al (2006) Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. J Proteome Res 5:2098–2112

    Article  PubMed  CAS  Google Scholar 

  • Senepathy P, Shapiro MB, Harris NL (1990) Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol 183:252–278

    Article  Google Scholar 

  • Singh G, Gourinath S, Sharma S et al (2001) Sequence and crystal structure determination of a basic phospholipase A2 from common krait (Bungarus caeruleus) at 24 Å resolution: identification and characterization of its pharmacological sites. J Mol Biol 307:1049–1059

    Article  PubMed  CAS  Google Scholar 

  • Slowinski JB, Knight A, Rooney AP (1997) Inferring species trees from gene trees: a phylogenetic analysis of the elapidae (Serpentes) based on the amino acid sequences of venom proteins. Mol Phylogenet Evol 8:349–362

    Article  PubMed  CAS  Google Scholar 

  • Stern DL (2000) Evolutionary developmental biology and the problem of variation. Evolution 54:1079–1091

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Nei M (2004) False-positive selection identifed by ML-based methods: examples from the Sig1 gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol Biol Evol 21:914–921

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tatsuya A, Shiina T, Kimura N et al (2003) Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions/deletions as the major path to genomic divergence. Proc Natl Acad Sci USA 100:7708–7713

    Article  CAS  Google Scholar 

  • Tsai I-H, Wang Y-M, Chen Y-H et al (2003) Geographic variations, cloning, and functional analyses of the venom acidic phospholipases A2 of Crotalus viridis viridis. Arch Biochem Biophys 411:289–296

    Article  PubMed  CAS  Google Scholar 

  • Tsai I, Wang Y, Chen Y et al (2004) Venom phospholipase A2 of bamboo viper (Trimeresurus stejnegeri): molecular characterization, geographic variations and evidence for multiple ancestries. Biochem J 377:215–223

    Article  PubMed  CAS  Google Scholar 

  • Wong WSW, Yang Z, Goldman N et al (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl BioSci 13:555–556

    Google Scholar 

  • Yang Z (2002) Inference of selection from multiple species alignments. Curr Opin Genet Dev 12:688–694

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Zhou Y, Lin Z (2000) Structure of basic phospholipase A2 from Agkistrodon halys Pallas: implications for its association, hemolytic and anticoagulant activities. Toxicon 38:901–916

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Steve Mackessy for generously providing the S. c. edwardsii DNA sample, Jose Diaz, Giancarlo Lopez-Martinez, and David Denlinger for assistance with the lab work, Doug Wynn and Dan Harvey for help in the field, Joe Bielawski, Juan Calvete, James Cotton, Matt Dean, Brian Golding, Jeff Good, Dusan Kordis, Michael Nachman, Tom Waite, and Tom Wilson for advice and discussion, Laura Kubatko for help with the phylogenetic analyses, and the Gibbs Lab Group, Greg Booton, Brian Fry, and three anonymous reviewers for comments. Funding for this study was provided by the Columbus Zoo and Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lisle Gibbs.

Appendix

Appendix

Fig. A1
figure 6figure 6

Nucleotide sequences from PLA2 exons 2 (a), 3 (b), and 4 (c), which code for amino acid residues that make up the mature PLA2 venom protein. Complete genomic sequences for each sequence type have been deposited in GenBank under accession numbers EU369741–EU369759

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, H.L., Rossiter, W. Rapid Evolution by Positive Selection and Gene Gain and Loss: PLA2 Venom Genes in Closely Related Sistrurus Rattlesnakes with Divergent Diets. J Mol Evol 66, 151–166 (2008). https://doi.org/10.1007/s00239-008-9067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9067-7

Keywords

Navigation