Skip to main content
Log in

Protein Superfamily Evolution and the Last Universal Common Ancestor (LUCA)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

By exploiting three-dimensional structure comparison, which is more sensitive than conventional sequence-based methods for detecting remote homology, we have identified a set of 140 ancestral protein domains using very restrictive criteria to minimize the potential error introduced by horizontal gene transfer. These domains are highly likely to have been present in the Last Universal Common Ancestor (LUCA) based on their universality in almost all of 114 completed prokaryotic (Bacteria and Archaea) and eukaryotic genomes. Functional analysis of these ancestral domains reveals a genetically complex LUCA with practically all the essential functional systems present in extant organisms, supporting the theory that life achieved its modern cellular status much before the main kingdom separation (Doolittle 2000). In addition, we have calculated different estimations of the genetic and functional versatility of all the superfamilies and functional groups in the prokaryote subsample. These estimations reveal that some ancestral superfamilies have been more versatile than others during evolution allowing more genetic and functional variation. Furthermore, the differences in genetic versatility between protein families are more attributable to their functional nature rather than the time that they have been evolving. These differences in tolerance to mutation suggest that some protein families have eroded their phylogenetic signal faster than others, hiding in many cases, their ancestral origin and suggesting that the calculation of 140 ancestral domains is probably an underestimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Buchan DW, Rison SC, Bray JE, Lee D, Pearl F, Thornton JM, Orengo CA (2003) Gene3D: structural assignments for the biologist and bioinformaticist alike. Nucleic Acids Res 31:469–473

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2001) Comparative genomics and bioenergetics. Biochim Biophys Acta 1506:147–162

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U, Hacker J (2001) Whole genome plasticity in pathogenic bacteria. Curr Opin Microbiol 4:550–557

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (2000) The nature of the universal ancestor and the evolution of the proteome. Curr Opin Struct Biol 10:355–358

    Article  PubMed  CAS  Google Scholar 

  • Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:R14

    Article  PubMed  Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappe MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2003) Comparative genomics minimal gene-sets and the last universal commonancestor. Nat Rev Microbiol 1:127–136

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Grant A, Buchan D, Orengo CA (2003) Structural perspective on genome evolution. Curr Opin Struct Biol 13:359–369

    Article  PubMed  CAS  Google Scholar 

  • Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27:3389–3401

    Article  PubMed  CAS  Google Scholar 

  • McGuffin LJ, Street SA, Bryson K, Sorensen SA, Jones DT (2004) The Genomic Threading Database: a comprehensive resource for structural annotations of the genomes from key organisms. Nucleic Acids Res 32:D196–D199

    Article  PubMed  CAS  Google Scholar 

  • Metzler DE, ed (2002) Biochemistry. The chemical reactions of living cells, 2nd ed. Academic Press, New York

    Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Mirkin BG, Fenner TI, Galperin MY, Koonin EV (2003) Algorithms for computing parsimonious evolutionary scenarios for genome evolution the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3:2

    Article  PubMed  Google Scholar 

  • Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586

    Article  PubMed  CAS  Google Scholar 

  • Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, Schmidt S, Snel B, Bork P (2003) Systematic discovery of analogous enzymes in thiamine biosynthesis. Nat Biotechnol 21:790–795

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Cox MM, eds (2000) Lehninger principles of biochemistry, 3rd ed. Worth, New York

    Google Scholar 

  • Nimwegen E (2003) Scaling laws in the functional content of genomes. Trends Genet 19:479–484

    Article  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Orengo CA (1999) CORA—topological fingerprints for protein structural families. Protein Sci 8:699–715

    PubMed  CAS  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  PubMed  CAS  Google Scholar 

  • Ranea JA, Buchan DW, Thornton JM, Orengo CA (2004) Evolution of protein superfamilies and bacterial genome size. J Mol Biol 336:871–887

    Article  PubMed  CAS  Google Scholar 

  • Ranea JA, Grant A, Thornton JM, Orengo CA (2005) Microeconomic principles explain an optimal genome size in bacteria. Trends Genet 21:21–25

    Article  PubMed  CAS  Google Scholar 

  • Ranea JA (2005) Micro(be)-economics. Heredity 96:337–338

    Article  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Siegel S, Castellan N (1988) Nonparametric statistics for the behavioural sciences, 2nd ed. Anker JD (ed). McGraw-Hill International Editions, Singapore

  • Sillero A, Selivanov VA, Cascante M (2006) Pentose phosphate and Calvin cycles: similarities and three-dimensional views. Biochem Mol Biol Edu 34:275–277

    CAS  Google Scholar 

  • Sillitoe I, Dibley M, Bray J, Addou S, Orengo C (2005) Assessing strategies for improved superfamily recognition. Protein Sci 14:1800–1810

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Orengo CA (1989) Protein structure alignment. J Mol Biol 208:1–22

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies from a structural perspective. J Mol Biol 307:1113–1143

    Article  PubMed  CAS  Google Scholar 

  • Valdar WS (2002) Scoring residue conservation. Proteins 48:227–241

    Article  PubMed  CAS  Google Scholar 

  • Voet D, Voet J, eds (2004) Biochemistry, 3rd ed. Wiley & Sons, New York

    Google Scholar 

  • Wayne WD (1995) Biostatistics, 6th ed. Wiley, New York

    Google Scholar 

  • Whitfield J (2004) Origins of life: born in a watery commune. Nature 427:674–676

    Article  PubMed  CAS  Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Beatriz Simas Magalhaes for her useful advice and comments, Stathis Sideris for help with the figures, and Corin Yeats for text review. This work was supported by grants from the MRC (Christine A. Orengo) and European Union (Juan A. G. Ranea). A.S. was a visiting professor at UCL (from UAM) aided by the Spanish Ministry of Education and Science and supported by grants from Direccion General de Investigacion Cientifica y Tecnica (08/0021.1/2001) and Instituto de Salud Carlos III, RMN (C03/08) Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. G. Ranea.

Additional information

[Reviewing Editor: Dr. Rafael Zarobya]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranea, J.A.G., Sillero, A., Thornton, J.M. et al. Protein Superfamily Evolution and the Last Universal Common Ancestor (LUCA). J Mol Evol 63, 513–525 (2006). https://doi.org/10.1007/s00239-005-0289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0289-7

Keywords

Navigation