Skip to main content
Log in

Evolution of Hox Clusters in Salmonidae: A Comparative Analysis Between Atlantic Salmon (Salmo salar) and Rainbow Trout (Oncorhynchus mykiss)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We studied the genomic organization of Hox genes in Atlantic salmon (Salmo salar) and made comparisons to that in rainbow trout (Oncorhynchus mykiss), another member of the family Salmonidae. We used these two species to test the hypothesis that the Hox genes would provide evidence for a fourth round of duplication (4R) of this gene family given the recent polyploid ancestry of the salmonid fish. Thirteen putative Hox clusters were identified and 10 of these complexes were localized to the current Atlantic salmon genetic map. Syntenic regions with the rainbow trout linkage map were detected and further homologies and homeologies are suggested. We propose that the common ancestor of Atlantic salmon and rainbow trout possessed at least 14 clusters of Hox genes, and additional clusters cannot be ruled out. Salmonid Hox cluster complements seem to be more similar to those of zebrafish (Danio rerio) than medaka (Oryzias latipes) or pufferfish (Sphoeroides nephelus and Takifugu rubripes), as both Atlantic salmon and rainbow trout have retained HoxCb ortholog, which has been lost in medaka and pufferfish but not in zebrafish. However, our data suggest that phylogenetically, the homologous genes within each cluster express mosaic relationships among the teleosts tested and, thus, leave unresolved the interfamilial relationships among these taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
 
 
Figure 2
Figure 3

Similar content being viewed by others

References

  • Allendorf FW, Danzmann RG (1997) Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout Genetics 145:1083–1092

    PubMed  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner JB (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp 1–53

    Google Scholar 

  • Amores A, Force A, Yan YL, Loly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish Hox clusters and vertebrate genome evolution Science 282:1711–1714

    Article  PubMed  Google Scholar 

  • Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish Genome Res 14:1–10

    Article  PubMed  Google Scholar 

  • Aparicio S, Hawker K, Cottage A5 Mikawa Y, Zuo L, Venkatesh B, Chen E, Krumlauf R, Brenner S (1997) Organization of the Fugu rubripes Hox clusters: Evidence for continuing evolution of vertebrate Hox complexes Nat Genet 16:79–83

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Aubry J, Twait EC, Jurk S (2000) Actin gene duplication and the evolution of morphological complexity in land plants J Phycol 36:813–820

    Article  Google Scholar 

  • Bürglin TR (1994) A comprehensive classification of homeobox genes, In: Deboule D (ed) Guidebook to the homeobox genes. Oxford University Press, Oxford, pp 25–72

    Google Scholar 

  • de Rosa R, Grenier JK, Andreevas T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution Nature 399:772–776

    Article  PubMed  Google Scholar 

  • Ferrier DE, Akam M (1996) Organization of the Hox gene cluster in the grasshopper, Schistocerca gregaria Proc Natl Acad Sci USA 93:13024–13029

    Article  PubMed  Google Scholar 

  • Ferrier DE, Minguillon C, Holland PW, Garcia-Fernàndez J (2000) The amphioxus Hox cluster: Deuterostome posterior flexibility and Hox14 Evol Dev 2:284–293

    Article  PubMed  Google Scholar 

  • Ferrier DE (2004) Hox genes: Did the vertebrate ancestor have a Hox14? Curr Biol 14:210–211

    Article  Google Scholar 

  • Force A, Amores A, Postlethwait JH (2002) Hox cluster organization in the jawless vertebrate Petromyzon marinus J Exp Zool 294:30–46

    Article  PubMed  Google Scholar 

  • Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gene cluster Nature 370:563–566

    Article  PubMed  Google Scholar 

  • Hartley SE, (1987) The chromosomes of salmonid fishes Biol Rev 62:197–214

    Article  Google Scholar 

  • Hasebe M, (1999) Evolution of reproductive organs in land plants J Plant Res 112:463–474

    Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: A mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii” Mol Phylogenet Evol 27:476–488

    Article  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinlca M, Vagherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Johnson KR, Wright JEJ, May B (1987) Linkage relationships reflecting ancestral tetraploidy in salmonid fish Genetics 116:579–591

    PubMed  Google Scholar 

  • Krumlauf R, (1994) Hox genes in vertebrate development Cell 78:191–201

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software Bioinformatics 17:1244–1245

    Article  PubMed  Google Scholar 

  • Lewis EB, (1992) The 1991 Albert Lasker Medical Awards. Clusters of master control genes regulate the development of higher organisms JAMA 267:1524–1531

    Article  PubMed  Google Scholar 

  • Longhurst TJ, Joss JMP (1999) Homeobox genes in the Australian lungfish, Neoceratodus forsteri J Exp Zool 285:140–145

    Article  PubMed  Google Scholar 

  • Lynch M, Conery JS (2003) The evolutionary demography of duplicate genes J Struct Funct Genomics 3:35–44

    Article  PubMed  Google Scholar 

  • Málaga-Trillo E, Meyer A (2001) Genome duplications and accelerated evolution of Hox genes and cluster architecture in teleost fishes Am Zool 41:676–686

    Google Scholar 

  • Martinez P, Rast JP, Arenas-Mena C, Davidson EH (1999) Organization of an echinoderm Hox gene cluster Proc Natl Acad Sci USA 96:1469–1474

    Article  PubMed  Google Scholar 

  • McGinnis W, (1994) A century of homeosis, a decade of homeoboxes Genetics 68:607–611

    PubMed  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning Cell 68:283–302

    Article  Google Scholar 

  • McGinnis W, Hart CP, Gehring WJ, Ruddle FH (1984) Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila Cell 38:675–680

    Article  PubMed  Google Scholar 

  • Moghadam HK, Ferguson MM, Danzmann RG (2005) Evidence for Hox gene duplication in rainbow trout (Oncorhynchus mykiss): A tetraploid model species. J Mol Evol 61:(in press)

  • Morgenstern B, (1999) DIALIGN 2: Improvement of the segment-to-segment approach to multiple sequence alignment Bioinformatics 15:211–218

    Article  PubMed  Google Scholar 

  • Naruse K, Fulcamachi S, Mitani H, Kondo M, Matsuoka T, Kondo S, Hanamura N, Morita Y, Hasegawa K, Nishigaki R, Shimada A, Wada H, Kusakabe T, Suzuki N, Kinoshita M, Kanamori A, Terado T, Kimura H, Nonaka M, Shima A (2000) A detailed linkage map of medaka, Oryzias latipes: Comparative genomics and genome evolution Genetics 154:1773–1784

    PubMed  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping Genome Res 14:820–828

    Article  PubMed  Google Scholar 

  • Nelson JS (1994) Fishes of the world. John Wiley and Sons, New York

    Google Scholar 

  • Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA, Thorgaard GH (2003) A consolidated linkage map for rainbow trout (Oncorhynchus mykiss) Anim Genet 34:102–115

    Article  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer Verlag, New York

    Google Scholar 

  • Phillips RB, Rab P (2001) Chromosome evolution in the Salmonidae (Pisces): An update Biol Rev Camb Philos Soc 76:1–25

    Article  PubMed  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PP, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes Genome Res 10:1890–1902

    Article  PubMed  Google Scholar 

  • Prince VE, Joly L, Ekker M, Ho RK (1998) Zebrafish Hox genes: Genomic organization and modified colinear expression patterns in the trunk Development 125:407–420

    PubMed  Google Scholar 

  • Ruddle FH, Bartels JL, Bentley KL, Kappen C, Murtha MT, Pendleton JW (1994) Evolution of Hox genes Annu Rev Genet 28:423–442

    Article  PubMed  Google Scholar 

  • Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm LE, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex specific differences in recombination rates Genetics 155:1331–1345

    PubMed  Google Scholar 

  • Schughart K, Kappen C, Ruddle FH (1989) Duplication of large genomic regions during the evolution of vertebrate homeobox genes Proc Natl Acad Sci USA 86:7067–7071

    PubMed  Google Scholar 

  • Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica Nature 431:67–71

    Article  PubMed  Google Scholar 

  • Sidow A, (1996) Gen(om)e duplications in the evolution of early vertebrates Curr Opin Genet Dev 6:715–722

    Article  PubMed  Google Scholar 

  • Stellwag EJ, (1999) Hox gene duplication in fish Semin Cell Dev Biol 10:531–540

    Article  PubMed  Google Scholar 

  • Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish Philos Trans R Soc Lond B Biol Sci 356:1661–1679

    Article  PubMed  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish Genome Res 13:382–390

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates Proc Natl Acad Sci USA 101:1638–1643

    Article  PubMed  Google Scholar 

  • Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish BioEssay 20:511–515

    Article  Google Scholar 

  • Woram RA, McGowan C, Stout JA, Gharbi K, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexroad C, Danzmann RG (2004) A genetic linkage map for Arctic char (Salvelinus alpinus): Evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents Genome 47:304–315

    PubMed  Google Scholar 

  • Wright JEJ, Johnson K, Hollister A, May B (1983) Meiotic models to explain classical linkage, pseudolinkage, and chromosome pairing in tetraploid derivative salmonid genomes Isozymes Curr Top Biol Med Res 10:239–260

    PubMed  Google Scholar 

  • Zhang J, Nei M (1996) Evolution of Antennapedia class homeobox genes Genetics 142:295–303

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by AquaNet, Canada’s Network of Centers of Excellence in aquaculture, and the Natural Sciences and Engineering Research Council of Canada (NSERC). We also wish to thank Dr. Teresa Crease and the JME reviewers for their constructive comments on the manuscript and Xia Yue and Karim Gharbi for their laboratory assistance and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy G. Danzmann.

Additional information

Sequence data from this article have been deposited within the EMBL/GenBank Data Libraries under the following accession numbers: AY677341, AY677342, AY677343, AY677344, AY677345, AY677346, AY677347, AY677348, AY677349, AY677350, AY677351, AY677352, AY677353, AY677354, AY677355, AY677356, AY677357, AY677358, AY677359, AY677360, AY677361, AY677362, AY677363, AY677364 and AY677365.

[Reviewing Editor: Dr. Axel Meyer]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghadam, H.K., Ferguson, M.M. & Danzmann, R.G. Evolution of Hox Clusters in Salmonidae: A Comparative Analysis Between Atlantic Salmon (Salmo salar) and Rainbow Trout (Oncorhynchus mykiss). J Mol Evol 61, 636–649 (2005). https://doi.org/10.1007/s00239-004-0338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0338-7

Keywords

Navigation