Skip to main content

Advertisement

Log in

Expanding the spectrum of congenital anomalies of the diencephalic–mesencephalic junction

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

We aimed to describe the clinico-radiological findings of patients with disorders of diencephalic–mesencephalic junction (DMJ) formation and midbrain anteroposterior patterning.

Methods

We reviewed the DMJ anatomy of 445 patients with brain malformations. Associated supra/infratentorial abnormalities and clinical findings were noted. Craniocaudal and anteroposterior diameters of midbrain, pons, medulla, vermis, and transverse cerebellar diameter were compared with age-matched controls. Post hoc tests were corrected according to Bonferroni (p B).

Results

Two patterns of DMJ anomaly were identified in 12 patients (7 females, mean age 41 months). Type A was characterized by hypothalamic–mesencephalic fusion on axial plane, with possible midbrain ventral cleft (7 patients). Anteroposterior (p B = .006) and craniocaudal (p B = .027) diameters of the pons, craniocaudal diameter of the vermis (p B = .015), and transverse cerebellar diameter (p B = .011) were smaller than the controls. Corticospinal tract, basal ganglia, and commissural anomalies were also associated. Clinical findings included spastic-dystonic tetraparesis, hypothalamic dysfunction, epilepsy, and severe developmental delay. Type B was characterized by incomplete thalamic–mesencephalic cleavage on sagittal plane, with parenchymal bands connecting the interthalamic adhesion with the midbrain (five patients). Anteroposterior diameters of midbrain (p B = .002), pons (p B = .0004), and medulla (p B = .002) as well as the vermian anteroposterior (p B = .040) and craniocaudal diameters (p B = .014) were smaller than the controls. These patients were less neurologically impaired, most presenting mild developmental delay.

Conclusions

The spectrum of DMJ patterning defects is wide and may be associated with several brain malformations. Infratentorial brain structures should be carefully evaluated to better define the type of associated midbrain–hindbrain anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barkovich AJ, Millen KJ, Dobyns WB (2007) A developmental classification of malformations of the brainstem. Ann Neurol 62:625–639

    Article  PubMed  Google Scholar 

  2. Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132(Pt 12):3199–3230

    Article  PubMed Central  PubMed  Google Scholar 

  3. Doherty D, Millen KJ, Barkovich AJ (2013) Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol 12(4):381–393

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jissendi-Tchofo P, Severino M, Nguema-Edzang B, Toure C, Soto Ares G, Barkovich AJ (2015) Update on neuroimaging phenotypes of mid-hindbrain malformations. Neuroradiology 57(2):113–138

    Article  PubMed  Google Scholar 

  5. Bosemani T, Orman G, Boltshauser E, Tekes A, Huisman TA, Poretti A (2015) Congenital abnormalities of the posterior fossa. Radiographics 35(1):200–220

    Article  PubMed  Google Scholar 

  6. Gleeson JG, Keeler LC, Parisi MA, Marsh SE, Chance PF, Glass IA, Graham JM Jr, Maria BL, Barkovich AJ, Dobyns WB (2004) Molar tooth sign of the midbrain-hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet A 125A(2):125–134, discussion 117

    Article  PubMed  Google Scholar 

  7. Poretti A, Huisman TA, Scheer I, Boltshauser E (2011) Joubert syndrome and related disorders: spectrum of neuroimaging findings in 75 patients. AJNR Am J Neuroradiol 32(8):1459–1463

    Article  CAS  PubMed  Google Scholar 

  8. Rossi A, CatalaM BR, Di Comite R, Tortori-Donati P (2004) MR imaging of brain-stem hypoplasia in horizontal gaze palsy with progressive scoliosis. AJNR Am J Neuroradiol 25(6):1046–1048

    PubMed  Google Scholar 

  9. Barth PG, Majoie CB, Caan MW, Weterman MA, Kyllerman M, Smit LM, Kaplan RA, Haas RH, Baas F, Cobben JM, Poll-The BT (2007) Pontine tegmental cap dysplasia: a novel brain malformation with a defect in axonal guidance. Brain 130(Pt 9):2258–2266

    Article  PubMed  Google Scholar 

  10. Jissendi-Tchofo P, Doherty D, McGillivray G, Hevner R, Shaw D, Ishak G, Leventer R, Barkovich AJ (2009) Pontine tegmental cap dysplasia: MR imaging and diffusion tensor imaging features of impaired axonal navigation. AJNR Am J Neuroradiol 30(1):113–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ishak GE, Dempsey JC, Shaw DW, Tully H, Adam MP, Sanchez-Lara PA, Glass I, Rue TC, Millen KJ, Dobyns WB, Doherty D (2012) Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain 135(Pt 5):1370–1386

    Article  PubMed Central  PubMed  Google Scholar 

  12. PCH Consortium, Namavar Y, Barth PG, Kasher PR, van Ruissen F, Brockmann K, Bernert G, Writzl K, Ventura K, Cheng EY, Ferriero DM, Basel-Vanagaite L, Eggens VR, Krägeloh-Mann I, De Meirleir L, King M, Graham JM Jr, von Moers A, Knoers N, Sztriha L, Korinthenberg R, Dobyns WB, Baas F, Poll-The BT (2011) Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134(Pt 1):143–156

    Google Scholar 

  13. Zaki MS, Saleem SN, Dobyns WB, Barkovich AJ, Bartsch H, Dale AM, Ashtari M, Akizu N, Gleeson JG, Grijalvo-Perez AM (2012) Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation. Brain 135(Pt 8):2416–2427

    Article  PubMed Central  PubMed  Google Scholar 

  14. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135(Pt 5):1348–1369

    Article  PubMed Central  PubMed  Google Scholar 

  15. Severino M, Allegri AE, Pistorio A, Roviglione B, Di Iorgi N, Maghnie M, Rossi A (2014) Midbrain-hindbrain involvement in septo-optic dysplasia. AJNR Am J Neuroradiol 35(8):1586–1592

    Article  CAS  PubMed  Google Scholar 

  16. Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6(6):971–981

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura H, Watanabe Y (2005) Isthmus organizer and regionalization of the mesencephalon and metencephalon. Int J Dev Biol 49(2–3):231–235

    Article  CAS  PubMed  Google Scholar 

  18. Scholpp S, Lohs C, Brand M (2003) Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130:4881–4893

    Article  CAS  PubMed  Google Scholar 

  19. McGinty D, Gong H, Suntsova N, Alam MN, Methippara M, Guzman-Marin R, Szymusiak R (2004) Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems. Arch Ital Biol 142(4):501–509

    CAS  PubMed  Google Scholar 

  20. Bahi-Buisson N, Poirier K, Fourniol F, Saillour Y, Valence S, Lebrun N, Hully M, Bianco CF, Boddaert N, Elie C, Lascelles K, Souville I, Bahi-Buisson N, Poirier K, Fourniol F, Saillour Y, Valence S, Lebrun N, Hully M, Bianco CF, Boddaert N, Elie C, Lascelles K, Souville I, LIS-Tubulinopathies Consortium, Beldjord C, Chelly J (2014) The wide spectrum of tubulinopathies: what are the key features for the diagnosis? Brain 137(Pt 6):1676–1700

    Article  PubMed  Google Scholar 

  21. Kato M, Das S, Petras K, Kitamura K, Morohashi K, Abuelo DN, Barr M, Bonneau D, Brady AF, Carpenter NJ, Cipero KL, Frisone F, Fukuda T, Guerrini R, Iida E, Itoh M, Lewanda AF, Nanba Y, Oka A, Proud VK, Saugier-Veber P, Schelley SL, Selicorni A, Shaner R, Silengo M, Stewart F, Sugiyama N, Toyama J, Toutain A, Vargas AL, Yanazawa M, Zackai EH, Dobyns WB (2004) Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 23(2):147–159

    Article  CAS  PubMed  Google Scholar 

  22. Bonneau D, Toutain A, Laquerrière A, Marret S, Saugier-Veber P, Barthez MA, Radi S, Biran-Mucignat V, Rodriguez D, Gélot A (2002) X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol 51(3):340–349

    Article  PubMed  Google Scholar 

  23. Okazaki S, Ohsawa M, Kuki I, Kawawaki H, Koriyama T, Ri S, Ichiba H, Hai E, Inoue T, Nakamura H, Goto Y, Tomiwa K, Yamano T, Kitamura K, Itoh M (2008) Aristaless-related homeobox gene disruption leads to abnormal distribution of GABAergic interneurons in human neocortex: evidence based on a case of X-linked lissencephaly with abnormal genitalia (XLAG). Acta Neuropathol 116(4):453–462

    Article  CAS  PubMed  Google Scholar 

  24. Jissendi-Tchofo P, Kara S, Barkovich AJ (2009) Midbrain-hindbrain involvement in lissencephalies. Neurology 72(5):410–418

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32(3):359–369

    Article  CAS  PubMed  Google Scholar 

  26. Colombo E, Galli R, Cossu G, Gécz J, Broccoli V (2004) Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev Dyn 231(3):631–639

    Article  CAS  PubMed  Google Scholar 

  27. Wang B, Long JE, Flandin P, Pla R, Waclaw RR, Campbell K, Rubenstein JL (2013) Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants. J Comp Neurol 521(7):1561–1584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubenstein JL, Broccoli V (2007) Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation. J Neurosci 27(17):4786–4798

    Article  CAS  PubMed  Google Scholar 

  29. Colasante G, Sessa A, Crispi S, Calogero R, Mansouri A, Collombat P, Broccoli V (2009) Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Dev Biol 334(1):59–71

    Article  CAS  PubMed  Google Scholar 

  30. Yun K, Potter S, Rubenstein JL (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128(2):193–205

    CAS  PubMed  Google Scholar 

  31. Trzesniak C, Kempton MJ, Busatto GF, de Oliveira IR, Galvão-de Almeida A, Kambeitz J, Ferrari MC, Filho AS, Chagas MH, Zuardi AW, Hallak JE, McGuire PK, Crippa JA (2012) Adhesio interthalamica alterations in schizophrenia spectrum disorders: a systematic review and meta-analysis. Psychol Med 42(12):2523–2534

    Article  CAS  PubMed  Google Scholar 

  32. Olry R, Haines DE (2005) Interthalamic adhesion: scruples about calling a spade a spade? J Hist Neurosci 14(2):116–118

    Article  PubMed  Google Scholar 

  33. Samra KA, Cooper IS (1968) Radiology of the massa intermedia. Radiology 91(6):1124–1128

    Article  CAS  PubMed  Google Scholar 

  34. Miller E, Widjaja E, Blaser S, Dennis M, Raybaud C (2008) The old and the new: supratentorial MR findings in Chiari II malformation. Childs Nerv Syst 24(5):563–575

    Article  PubMed  Google Scholar 

  35. Cheng S, Tan K, Bilston LE (2010) The effects of the interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles. J Biomech 43(3):579–582

    Article  PubMed  Google Scholar 

  36. Basel-Vanagaite L, Raas-Rotchild A, Kornreich L, Har-Zahav A, Yeshaya J, Latarowski V, Lerer I, Dobyns WB, Shohat M (2010) Familial hydrocephalus with normal cognition and distinctive radiological features. Am J Med Genet A 152A(11):2743–2748

    Article  PubMed  Google Scholar 

  37. De France I, Saada P, Jouannic JM, Tantau J, Martinovic J, Encha-Razavi F (2002) Ultrasonographic and pathological correlation in a fetal intracranial cyst: a case of “diencephalo-synapsis”. J Gynecol Obstet Biol Reprod (Paris) 31(6):600–603

    Google Scholar 

  38. Cagneaux M, Vasiljevic A, Massoud M, Allias F, Massardier J, Gaucherand P, Guibaud L (2013) Severe second-trimester obstructive ventriculomegaly related to disorders of diencephalic, mesencephalic and rhombencephalic differentiation. Ultrasound Obstet Gynecol 42(5):596–602

    Article  CAS  PubMed  Google Scholar 

  39. Whitehead MT, Vezina G (2014) Interhypothalamic adhesion: a series of 13 cases. AJNR Am J Neuroradiol 35(10):2002–2006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the patients and families for participating in the study. We thank Claudia Mancini for MRI technical support and Serena Stornello for nursing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariasavina Severino.

Ethics declarations

We declare that this human study has been approved by our Institutional Review Board and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Due to the retrospective nature of this study, patient consent was waived.

Conflict of interest

We declare that we have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

On-line Resource 1: Table 2

Neuroradiological findings of patients with diencephalic-mesencephalic junction abnormalities (PDF 81.6 kb)

On-line Resource 2

Scatterplots of MH measurements for age categories in patients with DMJ anomalies at last MRI examination and 417 healthy controls. Anteroposterior (AP) diameter of the midbrain (A), pons (B), medulla (C), midbrain to pons (M/P) ratio of AP diameters (D), cranio-caudal (CC) diameter of the midbrain (E), pons (F), medulla (G), midbrain to pons (M/P) ratio of CC diameters (H), CC diameter of the vermis (I), vermian AP diameter (L), transverse cerebellar diameter (M) are shown. (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severino, M., Tortora, D., Pistorio, A. et al. Expanding the spectrum of congenital anomalies of the diencephalic–mesencephalic junction. Neuroradiology 58, 33–44 (2016). https://doi.org/10.1007/s00234-015-1601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1601-x

Keywords

Navigation