Skip to main content
Log in

Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-d-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5–15 µg/ml (0.4–12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly –OH groups from OGβDG and also PO2− groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beretta G, Artali R, Caneva E, Facino RM (2011) Conformation of the tridimensional structure of 1,2,3,4,6-pentagalloyl-β-d-glucopyranose (PGG) by 1H NMR, NOESY and theoretical study and membrane interaction in a simulated phospholipid bilayer: a first insight. Magn Reson Chem 49:132–136

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Yashiro K, Morinaga N, Miyazaki M, Noda M (2007) Inhibitory effects of various plant polyphenols on the toxicity of Staphylococcal α-toxin. Microb Pathog 42:215–224

    Article  CAS  PubMed  Google Scholar 

  • Dolowy K, Szewczyk A, Pikula S (2003) Blony biologiczne. Slask, Katowice-Warszawa

    Google Scholar 

  • Fraga CG, Oteiza PI (2011) Dietary flavonoids: role of (−)-epicatechin and related procyanidins in cell signaling. Free Radic Biol Med 51:813–823

    Article  CAS  PubMed  Google Scholar 

  • Furlan AL, Castets A, Nallet F, Pianet I, Grélard A, Dufourc EJ, Géan J (2014) Red wine tannins fluidify and precipitate lipid liposomes and bicelles. a role for lipids in wine tasting? Langmuir 30:5518–5526

    Article  CAS  PubMed  Google Scholar 

  • Gabrielska J, Sekowski S, Zukowska I, Przestalski S, Zamaraeva M (2013) The modified action of triphenyllead chloride on UVB-induced effects in albumin and lipids. Ecotoxicol Environ Saf 89:36–42

    Article  CAS  PubMed  Google Scholar 

  • Hagerman AE, Rice ME, Ritchard NT (1998) Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4 → 8) catechin (procyanidin). J Agric Food Chem 46:2590–2595

    Article  CAS  Google Scholar 

  • Haslam E (2007) Vegetable tannins—lessons of a phytochemical lifetime. Phytochemistry 68:2713–2721

    Article  CAS  PubMed  Google Scholar 

  • Hässig A, Linag WX, Schwabl H, Stampfli K (1999) Flavonoids and tannins: plant-based antioxidants with vitamin character. Med Hypotheses 52:479–481

    Article  PubMed  Google Scholar 

  • Hatano T, Hori M, Hemingway RW, Yoshida T (2003) Size exclusion chromatographic analysis of polyphenol–serum albumin complexes. Phytochemistry 63:817–823

    Article  CAS  PubMed  Google Scholar 

  • Huh NW, Porter NA, McIntosh TJ, Simon SA (1996) The interaction of polyphenols with bilayers: conditions for increasing bilayer adhesion. Biophys J 71:3261–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ionov M, Wróbel D, Gardikis K, Hatziantoniou S, Demetzos C, Majoral J-P, Klajnert B, Bryszewska M (2012) Effect of phosphorus dendrimers on DMPC lipid membranes. Chem Phys Lipids 165:408–413

    Article  CAS  PubMed  Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S (2001) Green tea polyphenol (−) -epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hagerman AE (2013) Interactions between plasma proteins and naturally occurring polyphenols. Curr Drug Metab 14:432–445

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T (1993) Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir Res. 21:289–299

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar V, Singh T, Katiyar SK (2008) Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 269:378–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda T, Yoshida T, Hatano T (1995) Hydrolyzable tannins and related polyphenols. In: Herz GW, Kirby GW, Moor RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products, vol 66. Springer-Verlag, Vienna, pp 1–117

    Google Scholar 

  • Olchowik E, Lotkowski K, Mavlyanov S, Abdullajanova N, Ionov M, Bryszewska M, Zamaraeva M (2012) Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cell Mol Biol Lett 17:333–348

    Article  CAS  PubMed  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621

    Article  CAS  Google Scholar 

  • Salikhov SI, Mavlyanov SM, Abdulladjanova NG, Pirniyazov AJ, Dalimov DN, Salakhutdinov BA, Kurmukov AG, Sadykov AS (2006) Polyphenols of some tannin containing plants and creation on their base drug remedies, New Research on Biotechnology Medicine, vol 11. Nova Biomedical Books, New York, pp 109–117

    Google Scholar 

  • Sekowski S, Ionov M, Kaszuba M, Mavlyanov S, Bryszewska M, Zamaraeva M (2014) Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin. Colloids Surf B 123:623–628

    Article  CAS  Google Scholar 

  • Simon SA, Disalvo EA, Gawrisch K, Borovyagin V, Toone E, Schiffman SS, Needham D, McIntosh TJ (1994) Increased adhesion between neutral lipid bilayers: interbilayer bridges formed by tannic acid. Biophys J 66:1943–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirk TW, Brown EF, Sum AK, Friedman M (2008) Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes. J Agric Food Chem 56:7750–7758

    Article  CAS  PubMed  Google Scholar 

  • Soares S, Mateus N, de Freitas V (2007) Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J Agric Food Chem 55:6726–6735

    Article  CAS  PubMed  Google Scholar 

  • Tarahovsky YS (2008) Plant polyphenols in cell-cell interaction and communication. Plant Signal Behav 3:609–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarahovsky YS, Muzafarov EN, Kim YA (2008) Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity. Mol Cell Biochem 314:65–71

    Article  CAS  PubMed  Google Scholar 

  • Tarahovsky YS, Yagolnik EA, Muzafarov EN, Abdrasilov BS, Kim YA (2012) Calcium-dependent aggregation and fusion of phosphatidylcholine liposomes induced by complexes of flavonoids with divalent iron. Biochim Biophys Acta 1818:695–702

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten SV, Hammertstone JF, Keen CL, Fraga CG, Oteiza PI (2005) Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa. J Agricult Food Chem 53:5041–5048

    Article  CAS  Google Scholar 

  • Zeta Meter com. Zeta Potential: a complete course in 5 minutes. http://www.zeta-meter.com/5min.pdf

  • Zeta Meter com. Everything you want to know about Zeta Potential. http://www.zeta-meter.com/everything.pdf

  • Yu X, Chu S, Hagerman AE, Lorigan GA (2011) Probing the interaction of polyphenols with lipid bilayers by solid-state NMR spectroscopy. J Agric Food Chem 59:6783–6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Sekowski.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekowski, S., Ionov, M., Dubis, A. et al. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes. J Membrane Biol 249, 171–179 (2016). https://doi.org/10.1007/s00232-015-9858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9858-x

Keywords

Navigation