Skip to main content
Log in

Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Amphipols are amphipathic polymers that stabilize membrane proteins isolated from their native membrane. They have been functionalized with various chemical groups in the past years for protein labeling and protein immobilization. This large toolbox of functionalized amphipols combined with their interesting physico-chemical properties give opportunities to selectively add multiple functionalities to membrane proteins and to tune them according to the needs. This unique combination of properties makes them one of the most versatile strategies available today for exploiting membrane proteins onto surfaces for various applications in synthetic biology. This review summarizes the properties of functionalized amphipols suitable for synthetic biology approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A8-35:

Poly(sodium acrylate)-based amphipol comprising 35 % of free carboxylate, 25 % of octyl chains and 40 % of isopropyl groups

APol:

Amphipol

BAPol:

Biotinylated A8-35

BG:

Benzyl guanine

BR:

Bacteriorhodopsin

CMC:

Critical micelle concentration

DAPol:

Deuterated A8-35

E. coli :

Escherichia coli

FAPol:

Fluorescently labeled A8-35

GFP:

Green fluorescent protein

GPCR:

G protein-coupled receptor

HAPol:

Hydrogenated A8-35

HistAPol:

Histidine-tagged A8-35

ImidAPol:

Imidazol-tagged A8-35

MPs:

Membrane proteins

NAPol:

Non-ionic glycosylated APol

NBD:

7-Nitro-1,2,3-benzoxadiazole

ND:

Nanodisc

NP:

Nanoparticle

NTA:

Nitriloacetic acid

OligAPol:

Oligodeoxynucleotide tagged A8-35

PerDAPol:

Perdeuterated A8-35

POR:

Cytochrome P450 oxidoreductase

SAPol:

Sulfonated APol

SPR:

Surface plasmon resonance

tOmpA:

Transmembrane domain of the Escherichia coli outer membrane protein A

References

  • Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Andrell J, Tate CG (2013) Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 30:52–63

    Article  Google Scholar 

  • Baneres JL, Popot JL, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29:314–322

    Article  CAS  Google Scholar 

  • Basit H, Sharma KS, Van der Heyden A, Gondran C, Breyton C, Dumy P, Winnik FM, Labbe P (2012) Amphipol mediated surface immobilization of FhuA: a platform for label-free detection of the bacteriophage protein pb5. Chem Commun 48:6037–6039

    Article  CAS  Google Scholar 

  • Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584:1721–1727

    Article  CAS  Google Scholar 

  • Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Baneres JL, Durand G, Zito F, Pucci B, Popot JL (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51:1416–1430

    Article  CAS  Google Scholar 

  • Bechara C, Bolbach G, Bazzaco P, Sharma KS, Durand G, Popot J-L, Zito F, Sagan S (2012) Maldi-tof mass spectrometry analysis of amphipol-trapped membrane proteins. Anal Chem 84:6128–6135

    Article  CAS  Google Scholar 

  • Bieri C, Ernst OP, Heyse S, Hofmann KP, Vogel H (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat Biotechnol 17:1105–1108

    Article  CAS  Google Scholar 

  • Breyton C, Pucci B, Popot J-L (2010) Amphipols and fluorinated surfactants: two alternatives to detergents for studying membrane proteins in vitro. In: Mus-Veteau I (ed) Heterologous Expression of Membrane Proteins. Springer, Berlin, pp 219–245

    Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot JL, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Reson 197:91–95

    Article  CAS  Google Scholar 

  • Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Baneres JL (2010) Structure of a GPCR ligand in its receptor-bound state: Leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057

    Article  CAS  Google Scholar 

  • Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637

    Article  CAS  Google Scholar 

  • Charvolin D, Perez JB, Rouviera F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot JL (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410

    Article  CAS  Google Scholar 

  • Charvolin D, Dezi M, Picard M, Huang LS, Berry EA, Popot JL (2014) Solution behavior and crystallization of cytochrome bc1 in the presence of amphipols. Submitted to the J Membrane Biol

  • Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286:38168–38176

    Article  CAS  Google Scholar 

  • Dahmane T, Damian M, Mary S, Popot JL, Baneres JL (2009) Amphipol-Assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    Article  CAS  Google Scholar 

  • Damian M, Marie J, Leyris JP, Fehrentz JA, Verdie P, Martinez J, Baneres JL, Mary S (2012) High constitutive activity is an intrinsic feature of ghrelin receptor protein. A study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 287:3630–3641

    Article  CAS  Google Scholar 

  • Della Pia EA, Holm JV, Lloret N, Le Bon C, Popot J-L, Zoonens M, Nygård J, Martinez KL (2014) A step closer to membrane protein multiplexed nanoarrays using biotin-doped polypyrrole. ACS Nano 8:1844–1853

    Article  CAS  Google Scholar 

  • Denisov I, Grinkova Y, Lazarides A, Sligar S (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  CAS  Google Scholar 

  • Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valerio M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot JL, Picard M, Minard P (2014) Amphipol-mediated screening of molecular ortheses specific for membrane protein targets. J Membrane Biol (submitted)

  • Friedrich MG, Giess F, Naumann R, Knoll W, Ataka K, Heberle J, Hrabakova J, Murgida DH, Hildebrandt P (2004) Active site structure and redox processes of cytochrome c oxidase immobilised in a novel biomimetic lipid membrane on an electrode. Chem Commun 21:2376–2377

    Article  Google Scholar 

  • Fruh V, IJzerman AP, Siegal G (2011) How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem Rev 111:640–656

    Article  Google Scholar 

  • Gautier A, Juillerat A, Heinis C, Correa IR, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    Article  CAS  Google Scholar 

  • Giusti F, Popot JL, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by forster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    Article  CAS  Google Scholar 

  • Giusti F, Kessler P, Westh Hansen R, Della Pia EA, Le Bon C, Mourier G, Popot J-L, Martinez KL, Zoonens M (2014a) Synthesis of polyhistidine- or Imidazole-bearing Amphipols and their use for immobilization of membrane proteins (in preparation)

  • Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford S, Ashcroft AE, Popot JL (2014b) Synthesis, characterization and applications of a perdeuterated amphipol. J Membrane Biol. doi:10.1007/s00232-014-9656-x

    Article  CAS  Google Scholar 

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot JL, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot JL (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok RWH, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  Google Scholar 

  • Goldsmith BR, Mitala JJ, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG, Luetje CW, Gelperin A, Rhodes PA, Discher BM, Johnson ATC (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5:5408–5416

    Article  CAS  Google Scholar 

  • Gottschalk I, Li YM, Lundahl P (2000) Chromatography on cells: analyses of solute interactions with the glucose transporter Glut1 in human red cells adsorbed on lectin-gel beads. J Chromatogr B 739:55–62

    Article  CAS  Google Scholar 

  • Harding PJ, Hadingham TC, McDonnell JM, Watts A (2006) Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur Biophys J Biophys Lett 35:709–712

    Article  CAS  Google Scholar 

  • Hovers J, Potschies M, Polidori A, Pucci B, Raynal S, Bonneté F, Serrano-Vega MJ, Tate CG, Picot D, Pierre Y (2011) A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization. Mol Membr Biol 28:171–181

    Article  Google Scholar 

  • Iversen L, Cherouati N, Berthing T, Stamou D, Martinez KL (2008) Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality. Langmuir 24:6375–6381

    Article  CAS  Google Scholar 

  • Jensen K, Jensen PE, Moller BL (2011) Light-driven cytochrome p450 hydroxylations. ACS Chem Biol 6:533–539

    Article  CAS  Google Scholar 

  • Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647

    Article  CAS  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    Article  CAS  Google Scholar 

  • Krueger AT, Imperiali B (2013) Fluorescent amino acids: modular building blocks for the assembly of new tools for chemical biology. ChemBioChem 14:788–799

    Article  CAS  Google Scholar 

  • Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc Natl Acad Sci USA 104:20719–20724

    Article  CAS  Google Scholar 

  • Ladaviere C, Toustou M, Gulik-Krzywicki T, Tribet C (2001) Slow reorganization of small phosphatidylcholine vesicles upon adsorption of amphiphilic polymers. J Colloid Interface Sci 241:178–187

    Article  CAS  Google Scholar 

  • Laitinen OH, Nordlund HR, Hytonen VP, Kulomaa MS (2007) Brave new (strept)avidins in biotechnology. Trends Biotechnol 25:269–277

    Article  CAS  Google Scholar 

  • Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot JL (2014a) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acid Research. doi:10.1093/nar/gku250

    Article  CAS  Google Scholar 

  • Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot JL (2014b) Labeling and functionalizing amphipols for biological applications. J Membrane Biol. doi:10.1007/s00232-014-9655-yl

  • Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem 84:9841–9847

    Article  CAS  Google Scholar 

  • Liu YCC, Rieben N, Iversen L, Sorensen BS, Park J, Nygard J, Martinez KL (2010) Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology 21:245105

    Article  Google Scholar 

  • Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3:591–596

    Article  CAS  Google Scholar 

  • Martinez KL, Gohon Y, Corringer PJ, Tribet C, Merola F, Changeux JP, Popot JL (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528:251–256

    Article  CAS  Google Scholar 

  • Martinez KL, Meyer BH, Hovius R, Lundstrom K, Vogel H (2003) Ligand binding to G protein-coupled receptors in tethered cell membranes. Langmuir 19:10925–10929

    Article  CAS  Google Scholar 

  • Nagy JK, Hoffmann AK, Keyes MH, Gray DN, Oxenoid K, Sanders CR (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett 501:115–120

    Article  CAS  Google Scholar 

  • Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069

    Article  CAS  Google Scholar 

  • Niemeyer CM, Burger W, Hoedemakers RMJ (1998) Hybridization characteristics of biomolecular adaptors, covalent DNA streptavidin conjugates. Bioconjug Chem 9:168–175

    Article  CAS  Google Scholar 

  • Oh EH, Song HS, Park TH (2011) Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 48:427–437

    Article  CAS  Google Scholar 

  • Opačić M, Popot J-L, Durand G, Bosco M, Polidori A, Croce R (2014) Amphipols and photosynthetic pigment-protein complexes. J Membrane Biol (submitted)

  • Perez JB, Martinez KL, Segura JM, Vogel H (2006) Supported cell-membrane sheets for functional fluorescence imaging of membrane proteins. Adv Funct Mater 16:306–312

    Article  CAS  Google Scholar 

  • Perlmutter JD, Drasler WJ, Xie WS, Gao JL, Popot JL, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537

    Article  CAS  Google Scholar 

  • Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot JL, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other media. J Membrane Biol. doi:10.1007/s00232-014-9654-z

    Article  CAS  Google Scholar 

  • Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell HJ, Kleinschmidt JH, Popot JL (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961

    Article  CAS  Google Scholar 

  • Polovinkin V, Gushchin I, Balandin T, Chervakov P, Round E, Schevchenko V, Popov A, Borshchevskiy V, Popot JL, Gordeliy V (2014) High-resolution structure of a membrane protein by direct transfer from amphipol to lipid mesophase. J Membrane Biol (submitted)

  • Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79(79):737–775

    Article  CAS  Google Scholar 

  • Popot JL, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flotenmeyer M, Giusti F, Gohon Y, Herve P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    Article  CAS  Google Scholar 

  • Popot JL, Althoff T, Bagnard D, Baneres JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Cremel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kuhlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40(40):379–408

    Article  CAS  Google Scholar 

  • Qu XL, Alvarez PJJ, Li QL (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Schmid EL, Tairi AP, Hovius R, Vogel H (1998) Screening ligands for membrane protein receptors by total internal reflection fluorescence: the 5-HT3 serotonin receptor. Anal Chem 70:1331–1338

    Article  CAS  Google Scholar 

  • Song HS, Kwon OS, Lee SH, Park SJ, Kim UK, Jang J, Park TH (2013) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13:172–178

    Article  CAS  Google Scholar 

  • Tao H, Lee SC, Moeller A, Roy RS, Siu FY, Zimmermann J, Stevens RC, Potter CS, Carragher B, Zhang Q (2013) Engineered nanostructured β-sheet peptides protect membrane proteins. Nat Methods 10:759–761

    Article  CAS  Google Scholar 

  • Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot J-L, De la Maza LM (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot JL (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576

    Article  CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot JL, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  Google Scholar 

  • Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341

    Article  CAS  Google Scholar 

  • Vial F, Rabhi S, Tribet C (2005) Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. Langmuir 21:853–862

    Article  CAS  Google Scholar 

  • Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35

    Article  CAS  Google Scholar 

  • Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H (2009) Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed 48:7744–7751

    Article  CAS  Google Scholar 

  • Yang Q, Lundahl P (1994) Steric immobilization of liposomes in chromatographic gel beads and incorporation of integral membrane-proteins into their lipid bilayers. Anal Biochem 218:210–221

    Article  CAS  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    Article  CAS  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot JL (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  Google Scholar 

  • Zoonens M, Zito F, Martinez KL, Popot JL (2014) Amphipols: a general introduction and some protocols. In: Mus-Veteau I (ed) Membrane proteins production for structural analysis. Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank Jean-Luc Popot for fruitful discussions and feedback on the manuscript. This work was supported by the UNIK Synthetic Biology, funded by the Danish Ministry for Science, Technology and Innovation; by the Lundbeck Foundation Center for Biomembranes in Nanomedicine (CBN) and the Danish Agency for Science Technology and Innovation (The Danish Council for Strategic Research—ANaCell project), by the Centre National de la Recherche Scientifique (CNRS), by Paris-7 University (Sorbonne Paris Cité), and by the “Initiative d’Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABX-0011-01). E.D.P. is supported by a Danish Research Council fellowship award (FTP-12-132506). M.Z is a recipient of Projet International de Coopération Scientifique (APIC–DK, SURFAPol project) from the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Pia, E.A., Hansen, R.W., Zoonens, M. et al. Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology. J Membrane Biol 247, 815–826 (2014). https://doi.org/10.1007/s00232-014-9663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9663-y

Keywords

Navigation