Skip to main content

Advertisement

Log in

The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiin-Yuh J, Mu-Cheng W, Wen-Jeng C (1996) Numerical and experimental studies of three-dimensional plate-fin and tube heat exchangers. Int J Heat Mass Transf 39:3083

    Article  Google Scholar 

  2. Xi G, Ebisu T, Torikoshi K (1997) Differences in simulation with two-and three-dimensional models for finned tube heat exchangers. Transport Phenomena in Thermal Science and Process Engineering, Kyoto, Japan, pp 755–760

    Google Scholar 

  3. Tsai S, Sheu TW (1998) Some physical insights into a two-row finned-tube heat transfer. Comput Fluids 27:29–46

    Article  MATH  Google Scholar 

  4. Wang C-C, Lo J, Lin Y-T, Wei C-S (2002) Flow visualization of annular and delta winlet vortex generators in fin-and-tube heat exchanger application. Int J Heat Mass Trans 45

  5. Tao YB, He YL, Huang J, Wu ZG, Tao WQ (2007) Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers. Int J Therm Sci 46:768–778

    Article  MATH  Google Scholar 

  6. Tao YB, He YL, Huang J, Wu ZG, Tao WQ (2007) Three-dimensional numerical study of wavy fin-and-tube heat exchangers and field synergy principle analysis. Int J Heat Mass Transf 50:1163–1175

    Article  MATH  Google Scholar 

  7. Tao YB, He YL, Wu ZG, Tao WQ (2007) Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes. Int J Heat Fluid Flow 28:1531–1544

    Article  MATH  Google Scholar 

  8. Qu Z, Tao W, He Y (2004) Three-dimensional numerical simulation on laminar heat transfer and fluid flow characteristics of strip fin surface with X-arrangement of strips. J Heat Transfer 126:697

    Article  Google Scholar 

  9. Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013) Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. Int J Heat Mass Transf 57:58–72

    Article  Google Scholar 

  10. Bergles AE (2002) ExHFT for fourth generation heat transfer technology. Exp Thermal Fluid Sci 26:335–344

    Article  Google Scholar 

  11. Edwards FJ, GJRA (1974) The improvement of forces convection surface heat transfer using surfaces protrusions in the form of (A) cubes and (B) vortex generators. Proceedings of the 5th international conference on heat transfer, Tokyo vol. 2: pp. 244–248

  12. Leu J-S, Wu Y-H, Jang J-Y (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transf 47:4327–4338

    Article  Google Scholar 

  13. Gholami AA, Wahid MA, Mohammed HA (2014) Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. Int Commun Heat Mass Transfer 54:132–140

    Article  Google Scholar 

  14. Wu JM, Tao WQ (2008) Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B: parametric study of major influence factors. Int J Heat Mass Transf 51:3683–3692

    Article  MATH  Google Scholar 

  15. Wu JM, Tao WQ (2008) Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle. Int J Heat Mass Transf 51:1179–1191

    Article  MATH  Google Scholar 

  16. Biswas G, Torii K, Fujii D, Nishino K (1996) Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. Int J Heat Mass Transf 39:3441–3451

    Article  Google Scholar 

  17. Gentry MC, Jacobi AM (2002) Heat transfer enhancement by delta-wing-generated tip vortices in flat-plate and developing channel flows. J Heat Transfer 124:1158

    Article  Google Scholar 

  18. Joardar A, Jacobi AM (2008) Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. Int J Refrig 31:87–97

    Article  Google Scholar 

  19. Li J, Wang S, Chen J, Lei Y-G (2011) Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators. Int J Heat Mass Transf 54:1743–1751

    Article  MATH  Google Scholar 

  20. Tian L, He Y, Tao Y, Tao W (2009) A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements. Int J Therm Sci 48:1765–1776

    Article  Google Scholar 

  21. Du X, Feng L, Li L, Yang L, Yang Y (2014) Heat transfer enhancement of wavy finned flat tube by punched longitudinal vortex generators. Int J Heat Mass Transf 75:368–380

    Article  Google Scholar 

  22. Wu XH, Zhang WH, Gou QP, Luo ZM, Lu YL (2014) Numerical simulation of heat transfer and fluid flow characteristics of composite fin. Int J Heat Mass Transf 75:414–424

    Article  Google Scholar 

  23. Zhou G, Feng Z (2014) Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. Int J Therm Sci 78:26–35

    Article  Google Scholar 

  24. Xia HH, Tang GH, Shi Y, Tao WQ (2014) Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers. Energy 74:27–36

    Article  Google Scholar 

  25. Wu XH, Zhang WH, Lu YL, Gou QP, Luo ZM (2014) Performance evaluation and optimization of semi-dimpled slit fin. Heat Mass Transf 50:1251–1259

    Article  Google Scholar 

  26. Li M, Zhou W, Zhang J et al (2014) Heat transfer and pressure performance of a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat transfer surface. Int J Heat Mass Transf 70:734–744

    Article  Google Scholar 

  27. Wu JM, Tao WQ (2008) Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part a: verification of field synergy principle. Int J Heat Mass Transf 51(5–6):1179–1191

    Article  MATH  Google Scholar 

  28. Zhou G, Ye Q (2012) Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl Therm Eng 37:241–248

    Article  MathSciNet  Google Scholar 

  29. Lei Y-G, He Y-L, Tian L-T, Chu P, Tao W-Q (2010) Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators. Chem Eng Sci 65:1551–1562

    Article  Google Scholar 

  30. Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Kevin Tucker P (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41:1–28

    Article  MATH  Google Scholar 

  31. Van Doormaal J, Raithby G (1984) Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer Heat Trans 7:147–163

    MATH  Google Scholar 

  32. Kraus AD, Aziz A, Welty J (2002) Extended surface heat transfer. Wiley, New York

    Google Scholar 

  33. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  Google Scholar 

  34. Yang X-S (2014) Chapter 5—genetic algorithms. In: Yang X-S (ed) Nature-inspired optimization algorithms. Elsevier, Oxford, pp 77–87

    Chapter  Google Scholar 

  35. Gosselin L, Tye-Gingras M, Mathieu-Potvin F (2009) Review of utilization of genetic algorithms in heat transfer problems. Int J Heat Mass Transf 52:2169–2188

    Article  MATH  Google Scholar 

  36. Beigzadeh R, Rahimi M, Parvizi M (2013) Experimental study and genetic algorithm-based multi-objective optimization of thermal and flow characteristics in helically coiled tubes. Heat Mass Transf 49:1307–1318

    Article  Google Scholar 

  37. Peng H, Ling X (2008) Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms. Appl Therm Eng 28:642–650

    Article  Google Scholar 

  38. Xie GN, Sunden B, Wang QW (2008) Optimization of compact heat exchangers by a genetic algorithm. Appl Therm Eng 28:895–906

    Article  Google Scholar 

  39. Yousefi M, Enayatifar R, Darus AN (2012) Optimal design of plate-fin heat exchangers by a hybrid evolutionary algorithm. Int Commun Heat Mass Transfer 39:258–263

    Article  Google Scholar 

  40. Ghosh S, Ghosh I, Pratihar DK, Maiti B, Das PK (2011) Optimum stacking pattern for multi-stream plate-fin heat exchanger through a genetic algorithm. Int J Therm Sci 50:214–224

    Article  Google Scholar 

  41. Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A (2009) Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Appl Therm Eng 29:203–209

    Article  Google Scholar 

  42. Guo J, Cheng L, Xu M (2009) Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl Therm Eng 29:2954–2960

    Article  Google Scholar 

  43. Hariharan NM, Sivashanmugam P, Kasthurirengan S (2012) Optimization of ther-moacoustic primemover using response surface methodology. HVAC&R Res 18:890–903

    Google Scholar 

Download references

Acknowledgements

The present work is supported by the Project of National Natural Science Foundation of China (No. 51476148) and Excellent Youth Foundation of He’nan Scientific Committee (154100510014) and Innovation Scientists and Technicians Troop Construction Project of Zhengzhou City (131PLJRC640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, D., Zhao, M. et al. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm. Heat Mass Transfer 52, 1871–1879 (2016). https://doi.org/10.1007/s00231-015-1709-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1709-x

Keywords

Navigation