Skip to main content

Advertisement

Log in

GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

Heat transfer area (m2)

Cp:

Specific heat capacity (kJ/kg K)

D:

Diameter (m)

h:

Heat transfer coefficient (W/m2 K)

f :

Friction factor

k:

Thermal conductivity (W/m K)

l:

Length of wire-rod (m)

L:

Length of test section (m)

m:

Mass flow rate (kg/s)

N:

Number of data points/wire-rod number per bundle

Nu:

Nusselt number

P:

Pitch lengths (m)

Pr:

Prandtl number

Q:

Heat transfer rate (W)

t:

Target data

T:

Temperature (K)

Re:

Reynolds number

V:

Velocity (m/s)

y:

Predicted value

ν:

Kinematic viscosity (m2/s)

ρ:

Density (kg/m3)

b:

Bulk

i:

Inlet

o:

Outlet

w:

Wall

References

  1. Klaczak A (2000) Heat transfer by laminar flow in a vertical pipe with twisted-tape inserts. Heat Mass Transf 36:195–199

    Article  Google Scholar 

  2. Bali T, Ayhan T (1999) Experimental investigation of propeller type swirl generator for a circular pipe flow. Int Commun Heat Mass Transf 26:13–22

    Article  Google Scholar 

  3. Abu-Khader MM (2006) Further understanding of twisted tape effects as tube insert for heat transfer enhancement. Heat Mass Transf 43:123–134

    Article  Google Scholar 

  4. Shabanian SR, Rahimi M, Shahhosseini M, Alsairafi AA (2011) CFD and experimental studies on heat transfer enhancement in an air cooler equipped with different tube inserts. Int Commun Heat Mass Transf 38:383–390

    Article  Google Scholar 

  5. Eiamsa-ard S, Promvonge P (2005) Enhancement of heat transfer in a tube with regularly spaced helical tape swirl generators. Sol Energy 78:483–494

    Article  Google Scholar 

  6. Patil SV, Vijaybabu PV (2012) Heat transfer enhancement through a square duct fitted with twisted tape inserts. Heat Mass Transf 48:1803–1811

    Article  Google Scholar 

  7. Pal PK, Saha SK (2010) Thermal and friction characteristics of laminar flow through square and rectangular ducts with transverse ribs and twisted tapes with and without oblique teeth. J Enhanc Heat Transf 17:1–21

    Article  MathSciNet  Google Scholar 

  8. Rahimi M, Shabanian SR, Alsairafi AA (2009) Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem Eng Process 48:762–770

    Article  Google Scholar 

  9. Durmus A, Durmus A, Esen M (2002) Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance. Appl Therm Eng 22:321–332

    Article  Google Scholar 

  10. Muñoz-Esparza D, Sanmiguel-Rojas E (2011) Numerical simulations of the laminar flow in pipes with wire coil inserts. Comput Fluids 44:169–177

    Article  MATH  Google Scholar 

  11. Beigzadeh R, Rahimi M, Parvizi M, Eiamsa-ard S (2014) Application of ANN and GA for the prediction and optimization of thermal and flow characteristics in a rectangular channel fitted with twisted tape vortex generators. Numer Heat Transf Part A 65:186–199

    Article  Google Scholar 

  12. JafariNasr MR, Habibi Khalaj A, Mozaffari SH (2010) Modeling of heat transfer enhancement by wire coil inserts using artificial neural network analysis. Appl Therm Eng 30:143–151

    Article  Google Scholar 

  13. Esen H, Ozgen F, Esen M, Sengur A (2009) Artificial neural network and wavelet neural network approaches for modelling of a solar air heater. Expert Syst Appl 36:11240–11248

    Article  Google Scholar 

  14. Esen H, Inalli M, Sengur A, Esen M (2008) Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems. Int J Refrig 31:65–74

    Article  Google Scholar 

  15. Esen H, Inalli M, Sengur A, Esen M (2008) Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system. Energ Build 40:1074–1083

    Article  Google Scholar 

  16. Esen H, Inalli M, Sengur A, Esen M (2008) Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing. Int J Therm Sci 47:431–444

    Article  Google Scholar 

  17. Esen H, Inalli M, Sengur A, Esen M (2008) Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Syst Appl 35:1940–1948

    Article  Google Scholar 

  18. Esen H, Inalli M, Sengur A, Esen M (2008) Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS. Build Environ 43:2178–2187

    Article  Google Scholar 

  19. Esen H, Esen M, Ozsolak O (2015) Modeling and experimental performance analysis of solar assisted ground source heat pump system. J Exp Theor Artif Intell. doi:10.1080/0952813X.2015.1056242

    Google Scholar 

  20. Beigzadeh R, Rahimi M (2012) Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks. Int Commun Heat Mass Transf 39:1279–1285

    Article  Google Scholar 

  21. Beigzadeh R, Rahimi M (2012) Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations. Int Commun Heat Mass Transf 39:1647–1653

    Article  Google Scholar 

  22. Bélanger S, Gosselin L (2009) Utilization of artificial neural networks in the context of materials selection for thermofluid design. Numer Heat Transf Part A 55:825–844

    Article  Google Scholar 

  23. Mehrabi M, Pesteei SM, Pashaee GT (2011) Modeling of heat transfer and fluid flow characteristics of helicoidal double-pipe heat exchangers using adaptive neuro-fuzzy inference system (ANFIS). Int Commun Heat Mass Transf 38:525–532

    Article  Google Scholar 

  24. Deng H, Guessasma S, Montavon G, Liao H, Coddet C, Benkrid D, Abouddi S (2005) Combination of inverse and neural network methods to estimate heat flux. Numer Heat Transf Part A 47:593–607

    Article  Google Scholar 

  25. Yu J, Jia B, Wu D, Wang D (2009) Optimization of heat transfer coefficient correlation at supercritical pressure using genetic algorithms. Heat Mass Transf 45:757–766

    Article  Google Scholar 

  26. Momayez L, Dupont P, Delacourt G, Lottin O, Peerhossaini H (2009) Genetic algorithm based correlations for heat transfer calculation on concave surfaces. Appl Therm Eng 29:3476–3481

    Article  Google Scholar 

  27. Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern 1:364–378

    Article  MathSciNet  Google Scholar 

  28. Farlow SJ (1984) Self-organizing method in modelling: GMDH-type algorithm. Marcel Dekker, New York

    MATH  Google Scholar 

  29. Nanan K, Pimsarn M, Jedsadaratanachai W, Eiamsa-ard S (2013) Heat transfer augmentation through the use of wire-rod bundles under constant wall heat flux condition. Int Commun Heat Mass Transf 48:133–140

    Article  Google Scholar 

  30. ANSI/ASME (1986) Measurement uncertainty. Supplement to ASME Performance Test Codes, PTC 19.1- 1985. The American Society of Mechanical Engineers, New York

  31. Ketabchi S, Ghanadzadeh H, Ghanadzadeh A, Fallahi S, Ganji M (2010) Estimation of VLE of binary systems (tert-butanol + 2-ethyl-1-hexanol) and (n-butanol + 2-ethyl-1-hexanol) using GMDH-type neural network. J Chem Thermodyn 42:1352–1355

    Article  Google Scholar 

  32. Pesteei SM, Mehrabi M (2010) Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low Reynolds numbers using artificial neural network. Int Commun Heat Mass Transf 37:901–906

    Article  Google Scholar 

  33. Fujimoto K, Nakabayashi S (2003) Applying GMDH algorithm to extract rules from examples. Syst Anal Model Simul 43:1311–1319

    Google Scholar 

  34. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithm: a tutorial. Reliab Eng Syst Saf 91:992–1007

    Article  Google Scholar 

  35. Sanaye H, Dehghandokht M (2011) Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm. Appl Energy 88:1568–1577

    Article  Google Scholar 

  36. Beigzadeh R, Rahimi M, Parvizi M (2013) Experimental study and genetic algorithm-based multi-objective optimization of thermal and flow characteristics in helically coiled tubes. Heat Mass Transf 49:1307–1318

    Article  Google Scholar 

  37. Najafi H, Najafi B, Hoseinpoori P (2011) Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Appl Therm Eng 31:1839–1847

    Article  Google Scholar 

  38. Huang S, Ma Z, Wang F (2015) A multi-objective design optimization strategy for vertical ground heat exchangers. Energy Build 87:233–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, M., Beigzadeh, R., Parvizi, M. et al. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles. Heat Mass Transfer 52, 1585–1593 (2016). https://doi.org/10.1007/s00231-015-1681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1681-5

Keywords

Navigation