Skip to main content
Log in

CO2 absorption in nanofluids in a randomly packed column equipped with magnetic field

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Magnetic nanofluids have been used for absorption of CO2 in a packed column in the presence of magnetic field. Adding nanoparticles into the solvent enhances mass transfer characteristics. The optimum concentrations of Fe3O4/water and NiO/water nanofluids are 0.005, and 0.01 % respectively, and the maximum enhancement of mass transfer rate in comparison with pure water is 12 and 9.5 % respectively. The magnetic field showed positive effect on the CO2 absorption performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a:

Specific surface area of packing (mm−3)

C:

Constant in Eq. 4

C:

Concentration (mol l−1)

d:

Diameter (m)

D:

Diffusion coefficient (ms−1)

Fr:

Froude number

g:

Gravitational acceleration (ms−2)

hl :

Column holdup (mm−3)

Kla:

Mass transfer coefficient (s−1)

NA :

Flux of mass transfer (mol m−3 s−1)

Q:

Fluid flow rate (l s−1)

Re:

Reynolds number

S:

Tower cross section (m2)

\( \overline{U} \) :

Mean effective velocity (ms−1)

U:

Velocity (ms−1)

We:

Weber number

Z:

Height of the tower (m)

µ:

Viscosity (kg s−1)

ρ:

Density (kg m−3)

*:

Saturation

ave:

Average

bs:

Base fluid

eff:

Effective

i:

Inlet

l:

Liquid

mf:

Magnetic field

nf:

Nanofluid

o:

Outlet

References

  1. Nik Hisyamudin BMN, Yokoyama S, Umemoto M (2009) Absorption of CO2 in EAF reducing slag from stainless steel making process by wet grinding. World Acad Sci Eng Technol 32:611–615

    Google Scholar 

  2. Kang YT, Kunugi Y, Kashiwagi T (2000) Review of advancedabsorption cycles: performance improvement and temperaturelift enhancement. Int J Refrig 23:388–411

    Article  Google Scholar 

  3. Daiguji H, Hihara E, Saito T (1997) Mechanism of absorption enhancement by surfactant. Int J Heat Mass Transf 40:1743–1752

    Article  Google Scholar 

  4. Kashiwagi T (1988) Basic mechanism of absorption, heat and mass transfer enhancement by the marangoni effect. Int Energy Agency Heat Pump Center 6:2–6

    Google Scholar 

  5. Veilleux J, Coulombe S (2011) A dispersion model of enhanced mass diffusion in nanofluids. Chem Eng Sci 66(11):2377–2384

    Article  Google Scholar 

  6. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div 231:99–105

    Google Scholar 

  7. Kim JK, Jung JY, Kang YT (2007) Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids. Int J Refrig 30:50–57

    Article  Google Scholar 

  8. Ma X, Su F, Chen J, Bai T, Han Z (2009) Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. Int Commun Heat Mass Transf 36:657–660

    Article  Google Scholar 

  9. Kim W, Kang HU, Jung K, Kim SH (2008) Synthesis of silica nanofluid and application to CO2 absorption. Sep Sci Technol 4311:3036–3055

    Article  Google Scholar 

  10. Samadi Z, Haghshenasfard M, Moheb A (2011) Effect of nanofluid on mass transfer coefficient of CO2 in a wetted wall column. Int Chem Eng Cong & Exihibition Kish Island, Iran

  11. Lee JW, Jung JY, Lee SG, Kang YT (2011) CO2 bubble absorption enhancement in methanol-based nanofluids. Int J Refrig 34:1727–1733

    Article  Google Scholar 

  12. Pineda IT, Lee JW, Jung I, Kang YT (2012) CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. Int J Refrig 35:1402–1409

    Article  Google Scholar 

  13. Komati S, Suresh A (2008) CO2 absorption into amine solutions: a novel strategy for intensification based on the addition of ferrofluids. J Chem Technol Biotech 83:1094–1100

    Article  Google Scholar 

  14. Niu XF, Du K, Xiao F (2010) Experimental study on ammonia–water falling film absorption in external magnetic fields. Int J Refrig 33:686–694

    Article  Google Scholar 

  15. Wu WD, Liu G, Chen SX, Zhang H (2013) Nanoferrofluid addition enhances ammonia/water bubble absorption in an external magnetic field. Energy Build 57:268–277

    Article  Google Scholar 

  16. Metha D, Hawley MC (1969) Wall effect in packed columns. Ind Eng Chem Process Des Dev 8:280–282

    Article  Google Scholar 

  17. Joubert R, Willie N (2013) Trickle flow liquid–solid mass transfer and wetting efficiency in small diameter columns. Can J Chem Eng 91(3):441–447

    Article  Google Scholar 

  18. Templeman JJ, Porter KE (1965) Experimental determination of wall flow in packed columns. Chem Eng Sci 21:1139–1140

    Article  Google Scholar 

  19. Billet R, Schultes M (1999) Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes. Chem Eng Res Des 77(6):498–504

  20. Mamaliga I, Sidor D, Condurat C, Tudose ETI (2014) Hydrodynamics and mass transfer coefficients for a modified Raschig ring packed column. Heat Mass Transf. doi:10.1007/s00231-014-1324-2

    Google Scholar 

  21. Fang X, Xuan Y, Li Q (2009) Experimental investigation on enhanced mass transfer in nanofluids. Appl Phys Lett 95(20):203108

    Article  Google Scholar 

  22. Veilleux J, Coulombe S (2011) A dispersion model of enhanced mass diffusion in nanofluids. Chem Eng Sci 66(11):2377–2384

    Article  Google Scholar 

  23. Nagy E, Feczko T, Koroknai B (2007) Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chem Eng Sci 62(24):7391–7398

    Article  Google Scholar 

  24. Rosu M, Marlina A, Kaya A, Schumpe A (2007) A Surfactant adsorption onto activated carbon and its effect on absorption with chemical reaction. Chem Eng Sci 62:7336–7343

    Article  Google Scholar 

  25. Kim JK, Jung JY, Kang YT (2006) The effect of nano-particles on the bubble absorption performance in a binary nanofluid. Int J Refrig 29:22–29

    Article  Google Scholar 

  26. Kars RL, Best RJ, Drinkenburg AAH (1979) The sorption of propane in slurries of active carbon in water. Chem Eng J 17:201–210

    Article  Google Scholar 

  27. Alper E, Wichtendahl B, Deckwer WD (1980) Gas Absorption mechanism in catalytic slurry reactors. Chem Eng Sci 35:217–222

    Article  Google Scholar 

  28. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:011301

    Article  Google Scholar 

  29. Gerardi C, Cory D, Buongiomo J, Hu LW, McKrell T (2009) Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett 95:253104

    Article  Google Scholar 

  30. Kim WG, Kang HU, Jung KM, Kim SH (2008) Synthesis of silica nanofluid and application to CO2 absorption. Sep Sci Technol 43(11–12):3036–3055

    Article  Google Scholar 

  31. Cussler EL (2009) Diffusion: Mass transfer in fluid systems. Cambridge Series in Chemical Engineering. Cambridge University Press, London

    Book  Google Scholar 

  32. Chantrell RW, Bradbury A, Popplewell J, Charles SW (1982) Agglomerate formation in a magnetic fluid. J Appl Phys 53(3):2742

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haghshenasfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, J., Haghshenasfard, M. & Etemad, S.G. CO2 absorption in nanofluids in a randomly packed column equipped with magnetic field. Heat Mass Transfer 51, 621–629 (2015). https://doi.org/10.1007/s00231-014-1439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1439-5

Keywords

Navigation