Skip to main content
Log in

High frequency ultrasound penetration through concentric tubes: illustrating cooling effects and cavitation intensity

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Effective cooling of water by using high frequency ultrasound waves in two concentric straight tubes was investigated. The outer tube was equipped with eight 1.7 MHz ultrasound transducers. The cavitation intensity in both tubes was examined by employing the Weissler reaction. The experimental results showed that employing the 1.7 MHz ultrasound waves caused high temperature drop in the internal tube while no significant thermal effects occurred in the outer tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Light absorption

\(C_{{{\text{I}}_{3}^{ - } }}\) :

Concentration of \({\text{I}}_{3}^{ - }\), mol/m3

C p :

Specific heat capacity, J/kg K

dq :

Amount of the exchanged heat flow rate, W

l :

Optical path length, m

m :

Mass, kg

\(\dot{m}\) :

Mass flow rate, kg/s

PA :

The amplitude of the ultrasound waves power, W

P diss :

Dissipated power, W

Q :

Volume flow rate, L/min

q :

Heat flow rate, W

t :

Time interval, s

T :

Temperature,  °C

US :

Ultrasound

UST :

Ultrasound transducer

Z:

Acoustic impedance

α T :

Transmission coefficient

α R :

Reflection coefficient

H vap :

Enthalpy of vaporization, J/kg

ΔT :

Temperature change, °C

ε 353 :

Molar extinction coefficient of \({\text{I}}_{3}^{ - }\) at a wavelength of 353 nm

v1:

Referring to evaporation process at entrance of the internal tube

v2:

Referring to evaporation process along the concentric tubes

c :

Cold

h :

Hot

i :

Inlet

loss :

Referring to heat flow rate transferred to the environment

o :

Outlet

us :

With ultrasound waves

0:

Without ultrasound waves

References

  1. Gondrexon N, Rousselet Y, Legay M, Boldo P, Person SL, Bontemps A (2010) Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound. Chem Eng Process 49:936–942. doi:10.1016/j.cep.2010.06.007

    Article  Google Scholar 

  2. Rahimi M, Dehbani M, Abolhasani M (2012) Experimental study on the effects of acoustic streaming of high frequency ultrasonic waves on convective heat transfer: effects of transducer position and wave interference. Int Commun Heat Mass Transf 39:720–725. doi:10.1016/j.icheatmasstransfer.2012.03.013

    Article  Google Scholar 

  3. Nastac L (2011) Mathematical modeling of the solidification structure evolution in the presence of ultrasound stirring. Metall Mater Trans B 42:1297–1305. doi:10.1007/s11663-011-9539-9

    Article  Google Scholar 

  4. Kiani H, Sun DW, Zhang Z (2013) Effects of processing parameters on the convective heat transfer rate during ultrasound assisted low temperature immersion treatment of a stationary sphere. J Food Eng. 115:384–390. doi:10.1016/j.jfoodeng.2012.10.029

    Article  Google Scholar 

  5. Kumar A, Kumaresan T, Pandit AB, Joshi JB (2006) Characterization of flow phenomena induced by ultrasound horn. Chem Eng Sci 61:7410–7420. doi:10.1016/j.ces.2006.08.038

    Article  Google Scholar 

  6. Hyun S, Lee DR, Loh BG (2005) Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations. Int J Heat Mass. Transf 48:703–718. doi:10.1016/j.ijheatmasstransfer.2004.07.048

    Article  Google Scholar 

  7. Cai J, Huai X, Yan R, Cheng Y (2009) Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure. Appl Therm Eng 29:1973–1982. doi:10.1016/j.applthermaleng.2008.09.015

    Article  Google Scholar 

  8. Oh YK, Park SH, Cho YI (2002) A study of the effect of ultrasound vibrations on phase-change heat transfer. Int J Heat Mass Transf 45:4631–4641. doi:10.1016/S0017-9310(02)00162-X

    Article  Google Scholar 

  9. Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150. doi:10.1016/j.ultsonch.2007.03.003

    Article  Google Scholar 

  10. Parvizian F, Rahimi M, Azimi N (2012) Macro- and micromixing studies on a high frequency continuous tubular sonoreactor. Chem Eng Process 57–58:8–15. doi: 10.1016/j.cep.2012.04.006

  11. Jagannathan TK, Nagarajana R, Ramamurthi K (2011) Effect of ultrasound on bubble breakup within the mixing chamber of an effervescent atomizer. Chem Eng Process 50:305–315. doi:10.1016/j.cep.2011.01.006

    Article  Google Scholar 

  12. Rahimi M, Azimi N, Parvizian F (2013) Using microparticles to enhance micromixing in a high frequency continuous flow sonoreactor. Chem Eng Process. doi: 10.1016/j.cep.2013.03.013

  13. Katekhaye SN, Gogate PR (2011) Intensification of cavitational activity in sonochemical reactors using different additives: efficacy assessment using a model reaction. Chem Eng Process 50:95–103. doi:10.1016/j.cep.2010.12.002

    Article  Google Scholar 

  14. Lighthill J (1978) Acoustic streaming. J Sound Vib 61:391–418. doi:10.1016/0022-460X(78)90388-7

    Article  MATH  Google Scholar 

  15. Dhanalakshmi NP, Nagarajan R, Sivagaminathan N, Prasad BVSSS (2012) Acoustic enhancement of heat transfer in furnace tubes. Chem Eng Process 59:36–42. doi:10.1016/j.cep.2012.05.001

    Article  Google Scholar 

  16. Tajik B, Abbassi A, Saffar-Avval M, Abdullah A, Mohammad-Abadi H (2013) Heat transfer enhancement by acoustic streaming in a closed cylindrical enclosure filled with water. Int J Heat Mass Transf 60:230–235. doi:10.1016/j.ijheatmasstransfer.2012.12.066

    Article  Google Scholar 

  17. Bartoli C, Baffigi F (2011) Effects of ultrasound waves on the heat transfer enhancement in subcooled boiling. Exp Therm Fluid Sci 35:423–432. doi:10.1016/j.expthermflusci.2010.11.002

    Article  Google Scholar 

  18. Zhou DW, Liu DY, Hu XG, Ma CF (2002) Effect of acoustic cavitation on boiling heat transfer. Exp Therm Fluid Sci 26:931–938. doi:10.1016/S0894-1777(02)00201-7

    Article  Google Scholar 

  19. Baffigi F, Bartoli C (2012) Influence of the ultrasounds on the heat transfer in single phase free convection and in saturated pool boiling. Exp Therm Fluid Sci 36:12–21. doi:10.1016/j.expthermflusci.2011.07.012

    Article  Google Scholar 

  20. Kim HY, Kim YG, Kang BH (2004) Enhancement of natural convection and pool boiling heat transfer via ultrasound vibration. Int J Heat Mass Transf 47:2831–2840. doi:10.1016/j.ijheatmasstransfer.2003.11.033

    Article  Google Scholar 

  21. Jeong JH, Kwon YC (2006) Effects of ultrasonic vibration on subcooled pool boiling critical heat flux. Heat Mass Transf. doi: 10.1007/s00231-005-0079-1

  22. Kiani H, Sun DW, Delgado A, Zhang Z (2012) Investigation of the effect of power ultrasound on the nucleation of water during freezing of agar gel samples in tubing vials. Ultrason Sonochem 19:576–581. doi:10.1016/j.ultsonch.2011.10.009

    Article  Google Scholar 

  23. Lei H, Henry D, Ben Hadid H (2006) Numerical study of the influence of a longitudinal sound field on natural convection in a cavity. Int J Heat Mass Transf 49:3601–3616. doi:10.1016/j.ijheatmasstransfer.2006.02.045

    Article  MATH  Google Scholar 

  24. Nomura S, Murakami K, Aoyama Y, Ochi J (2000) Effects of changes in frequency of ultrasonic vibrations on heat transfer. Heat Transf 29:358–372. doi:10.1002/1523-1496(200007)29:5<358

    Google Scholar 

  25. Fand RM, Kave J (1963) The influence of sound on heat transfer from cylinder in cross flow. Int J Heat Mass Transf 6:571–596. doi:10.1016/0017-9310(63)90014-0

    Article  Google Scholar 

  26. Bergles AE, Newell PH (1965) The Influence of ultrasound vibrations on heat transfer to water flowing in annuli. Int J Heat Mass Transf 8:1273–1280. doi:10.1016/0017-9310(65)90055-4

    Article  Google Scholar 

  27. Monnot A, Boldo P, Gondrexon N, Bontemps A (2007) Enhancement of cooling rate by means of high frequency ultrasound. Heat Transf Eng 28:3–8. doi:10.1080/01457630600985485

    Article  Google Scholar 

  28. Legay M, Person SL, Gondrexon N, Boldo P, Bontemps A (2012) Performances of two heat exchangers assisted by ultrasound. Appl Therm Eng 37:60–66. doi:10.1016/j.applthermaleng.2011.12.051

    Article  Google Scholar 

  29. Legay M, Simony B, Boldo P, Gondrexon N, Person SL, Bontemps A (2012) Improvement of heat transfer by means of ultrasound: application to a double-tube heat exchanger. Ultrason Sonochem 19:1194–1200. doi:10.1016/j.ultsonch.2012.04.001

    Article  Google Scholar 

  30. Legay M, Gondrexon N, Person SL, Boldo P, Bontemps A (2011) Enhancement of heat transfer by ultrasound: review and recent advances. Int J Chem Eng. doi:10.1155/2011/670108

  31. Banerjee S, Kundu T (2007) Ultrasonic field modeling in plates immersed in fluid. Int J Solids Struct 44:6013–6029. doi:10.1016/j.ijsolstr.2007.02.011

    Article  MATH  Google Scholar 

  32. Abolhasani M, Rahimi M, Dehbani M, Alsairafi AA (2012) CFD modeling of heat transfer by 1.7 MHz ultrasound waves. Numer Heat Transf Part A 62:822–841. doi:10.1080/10407782.2012.712432

    Article  Google Scholar 

  33. Hendee WR, Ritenour ER (2002) Ultrasound waves, medical imaging physics, 4th edn. Wiley-Liss, Inc., New York ISBN: 0-471-38226-4

    Book  Google Scholar 

  34. Lohne KD, Lunde P, Vestrheim M (2011) Measutements and 3D simulations of ultrasonic directive beam transmission through a water-immersed steel plate, Proceedings of the 34th Scandinavian Symposium on Physical Acoustics, Geilo 30 January–2 February

  35. Laugier P, Haiat G (2011) Bone quantitative ultrasound. Springer. doi: 10.1007/978-94-007-0017-8

  36. Tiefensee F, Willinger CB, Heppe G, Engel PH, Jakob A (2010) Nanocomposite cerium oxide polymer matching layers with adjustable acoustic impedance between 4 MRayl and 7 MRayl. Ultrasonics 50:363–366. doi:10.1016/j.ultras.2009.08.012

    Article  Google Scholar 

  37. Kasolang S, Ahmad MA, DwyerJoyce RS (2011) Measurement of circumferential viscosity profile in stationary journal bearing by shear ultrasonic reflection. Tribol Int 44:1264–1270. doi:10.1016/j.triboint.2011.04.014

    Article  Google Scholar 

  38. Parvizian F, Rahimi M, Faryadi M (2011) Macro- and micromixing in a novel sonochemical reactor using high frequency ultrasound. Chem Eng Process 5:732–740. doi:10.1016/j.cep.2011.06.011

    Article  Google Scholar 

  39. Laborde JL, Bouyer C, Caltagirone JP, Gérard A (1998) Acoustic bubble cavitation at low frequencies. Ultrasounds 36:589–594. doi:10.1016/S0041-624X(97)00105-4

    Google Scholar 

  40. Servant G, Caltagirone JP, Gérard A, Laborde JL, Hita A (2000) Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. Ultrason Sonochem 7:217–227. doi:10.1016/S1350-4177(00)00059-6

    Article  Google Scholar 

  41. Luque de Castro MD, Priego Capote F (2007) Analytical applications of ultrasound, 1st edn. Elsevier Publisher, Spain

    Google Scholar 

  42. Peshkovsky SL, Peshkovsky AS (2008) Shock-wave model of acoustic cavitation. Ultrason Sonochem 15:618–628. doi:10.1016/j.ultsonch.2007.07.006

    Article  Google Scholar 

  43. Parvizian F, Rahimi M, Hosseini SM, Madaeni SS, Alsairafi AA (2012) The effect of high frequency ultrasound on diffusion boundary layer resistance in ion-exchange membrane transport. Desalination 286:155–165. doi:10.1016/j.desal.2011.11.016

    Article  Google Scholar 

  44. Monnier H, Wilhelm AM, Delmas H (2000) Effects of ultrasound on micromixing in flow cell. Chem Eng Sci 55:4009–4020. doi:10.1016/S0009-2509(00)00067-1

    Article  Google Scholar 

  45. Wu J, Nyborg WL (2008) Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliver Rev 60:1103–1116. doi:10.1016/j.addr.2008.03.009

    Article  Google Scholar 

  46. Manasseh R, Tho P, Ooi A, Petkovic-Duran K, Zhu Y (2010) Cavitation microstreaming and material transport around microbubbles. Phys Procedia 3:427–432. doi:10.1016/j.phpro.2010.01.056

    Article  Google Scholar 

  47. Monnier H, Wilhelm AM, Delmas H (1999) The influence of ultrasound on micromixing in a semi-batch reactor. Chem Eng Sci 54:2953–2961. doi:10.1016/S0009-2509(98)00335-2

    Article  Google Scholar 

  48. Moholkar VS (2009) Mechanistic optimization of a dual frequency sonochemical reactor. Chem Eng Sci 64:5255–5267. doi:10.1016/j.ces.2009.08.037

    Article  Google Scholar 

  49. Kirpalani DM, McQuinn KJ (2006) Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors. Ultrason Sonochem 13:1–5. doi:10.1016/j.ultsonch.2005.01.001

    Article  Google Scholar 

  50. Pohl B, Jamshidi R, Brenner G, Peuker UA (2012) Experimental study of continuous ultrasound reactors for mixing and precipitation of nanoparticles. Chem Eng Sci 69:365–372. doi:10.1016/j.ces.2011.10.058

    Article  Google Scholar 

  51. Morison KR, Hutchinson CA (2009) Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation. Ultrason. Sonochem. 16:176–183. doi:10.1016/j.ultsonch.2008.07.001

    Article  Google Scholar 

  52. Sutkar VS, Gogate PR (2010) Mapping of cavitational activity in high frequency sonochemical reactor. Chem Eng J 158:296–304. doi:10.1016/j.cej.2010.01.051

    Article  Google Scholar 

  53. Ashley MJ (1974) Preventing deposition on heat-exchange surfaces with ultrasound. Ultrasounds 12:215–221. doi:10.1016/0041-624X(74)90024-9

    Google Scholar 

  54. Naidu DVP, Rajan R, Kumar R, Gandhi KS, Arakeri VH, Chandrasekaran S (1994) Modelling of a batch sonochemical reactor. Chem Eng Sci 49:877–888. doi:10.1016/0009-2509(94)80024-3

    Article  Google Scholar 

  55. Weissler A, Cooper HW, Snyder S (1950) Chemical effect of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769–1775. doi:10.1021/ja01160a102

    Article  Google Scholar 

  56. Rahimi M, Safari S, Faryadi M, Moradi N (2014) Experimental investigation on proper use of dual high-low frequency ultrasound waves-Advantage and disadvantage, Accepted manuscript. doi: 10.1016/j.cep.2014.02.003

  57. http://www.scioncorp.com/pages/scionimagewindows.htm

Download references

Acknowledgments

The authors highly acknowledge the Iranian National Gas company-Kermanshah province for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, M., Abolhasani, M. & Azimi, N. High frequency ultrasound penetration through concentric tubes: illustrating cooling effects and cavitation intensity. Heat Mass Transfer 51, 587–599 (2015). https://doi.org/10.1007/s00231-014-1435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1435-9

Keywords

Navigation