Skip to main content
Log in

Unsteady thermal response of a porous fin under the influence of natural convection and radiation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, the effects of transient thermal performance of a rectangular porous fin in the presence of radiation and natural convection heat transfer are considered. The porous fin allows the flow to infiltrate through it and solid–fluid interaction takes place. This study is performed using Darcy’s model to formulate heat transfer equation. To study the thermal performance, three types of cases are considered, namely, long fin, finite length fin with insulated tip and finite length fin with tip exposed. The effects of the porosity parameter Sh, radiation parameter G and the temperature ratio CT on the dimensionless transient temperature distribution and heat transfer rate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

Bi:

Biot number \(\left( {\frac{h L}{k}} \right)\)

Cp :

Specific heat (J kg−1 K−1)

CT :

Temperature ratio \(\left( {\frac{{T_{\infty } }}{{T_{b} - T_{\infty } }}} \right)\)

Da:

Darcy number (K/t 2)

g:

Gravity constant (m s−2)

G:

Radiation parameter

Gr:

Grashof number

h:

Heat transfer coefficient (W m−2 K−1)

k:

Thermal conductivity (W m−1 K−1)

Kr:

Thermal conductivity ratio (k eff /k f )

K:

Permeability of porous fin

L:

Length (m)

Pr:

Prandtl number \(\left( {\frac{\nu }{\alpha }} \right)\)

q:

Heat transfer rate (W m−2)

q r :

Radiation heat transfer rate (W m−2)

Ra:

Rayleigh number (Gr Pr)

Sh :

Porous parameter

T(x):

Temperature at any point (K)

T b :

Temperature at fin base (K)

t:

Thickness of the fin (m)

t*:

Time (s)

v w (x):

Velocity of fluid passing through the fin any point (m s−1)

W:

Width of the fin (m)

x:

Axial coordinate (m)

X:

Dimensionless axial coordinate (x/L)

α :

Thermal diffusivity (m2 s−1)

β :

Coefficient of volumetric thermal expansion (K−1)

ε :

Porosity or void ratio

σ :

Stephen–Boltzmann constant [σ = 5.6703 × 10−8 (W/m2 K4)]

ϵ :

Emissivity of porous fin

θ :

Dimensionless temperature \(\left( {\theta = \frac{{T_{\left( x \right)} - T_{\infty } }}{{T_{b} - T_{\infty } }}} \right)\)

θ b :

Base temperature difference, \(\left( {T_{b} - T_{\infty } } \right)\) (K)

v :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

μ :

Absolute viscosity (kg m−1 s−1)

τ :

Dimensionless time

b:

Base of fin conditions

eff:

Porous properties

f:

Fluid properties

s:

Solid properties

References

  1. Kiwan S, Al-Nmir MA (2001) Using porous fins for heat transfer enhancement. ASME J Heat Transf 123:790–795

    Article  Google Scholar 

  2. Nguyen A, Aziz A (1992) The heat transfer rates from convecting-radiating fins for different profile shapes. Heat Mass Transf 27(2):67–72

    Google Scholar 

  3. Tadulkar M, Mishra A (2004) The effect of combined radiation and convection heat transfer in porous channel bounded by isothermal parallel plates. Int J Heat Mass Transf 47(5):1001–1013

    Article  Google Scholar 

  4. Mueller DW, Abu-Mulaweh HI (2006) Prediction of the temperature in a fin cooled by natural convection and radiation. Appl Therm Eng 26:1662–1668

    Article  Google Scholar 

  5. Mokheimer E (2003) Heat transfer from extended surface subject to variable heat transfer coefficient. Heat Mass Transf 39:131–138

    Google Scholar 

  6. Kang HS, Look DC (2007) Optimization of a thermally asymmetric convective and radiating annular fin. Heat Transf Eng 28:310–320

    Article  Google Scholar 

  7. Razelos P, Kakatsios X (2000) Optimum dimensions of convecting-radiating fins: part 1—longitudinal fins. Appl Therm Eng 20:1161–1192

    Article  Google Scholar 

  8. Yu LT, Chen CK (1999) Optimization of circular fins with variable thermal parameters. J Frankl Inst 336:77-95

    Article  MATH  Google Scholar 

  9. Yih KA (1999) Radiation effect on natural convection over a vertical cylinder embedded in porous media. Int Commun Heat Mass Transf 26(2):259–267

    Article  Google Scholar 

  10. Gorla RSR, Bakier AY (2011) Thermal analysis of natural convection and radiation in porous fins. Int Commun Heat Mass Transf 38:638–645

    Article  Google Scholar 

  11. Darvishi MT, Kheybari S, Khani F (2008) Spectral collocation method and Darvishi’s preconditionings to solve the generalized Burgers–Huxley equation. Commun Nonlinear Sci Numer Simul 13:2091–2103

    Article  MATH  MathSciNet  Google Scholar 

  12. Darvishi MT, Kheybari S, Khani F (2006) A numerical solution of the Korteweg-de Vries equation by pseudospectral method using Darvishi’s preconditionings. Appl Math Comput 182:98–105

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Subba Reddy Gorla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darvishi, M.T., Gorla, R.S.R. & Khani, F. Unsteady thermal response of a porous fin under the influence of natural convection and radiation. Heat Mass Transfer 50, 1311–1317 (2014). https://doi.org/10.1007/s00231-014-1341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1341-1

Keywords

Navigation