Skip to main content
Log in

On the Hilbert scheme of the moduli space of vector bundles over an algebraic curve

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Let M(n, ξ) be the moduli space of stable vector bundles of rank n ≥ 3 and fixed determinant ξ over a complex smooth projective algebraic curve X of genus g ≥ 4. We use the gonality of the curve and r-Hecke morphisms to describe a smooth open set of an irreducible component of the Hilbert scheme of M(n, ξ), and to compute its dimension. We prove similar results for the scheme of morphisms \({M or_P (\mathbb{G}, M(n, \xi))}\) and the moduli space of stable bundles over \({X \times \mathbb{G}}\), where \({\mathbb{G}}\) is the Grassmannian \({\mathbb{G}(n - r, \mathbb{C}^n)}\). Moreover, we give sufficient conditions for \({M or_{2ns}(\mathbb{P}^1, M(n, \xi))}\) to be non-empty, when s ≥ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaji V., Brambila-Paz L., Newstead P.E.: Stability of the Poincaré bundle. Math. Nachr. 188, 5–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertram, A.: Stable maps and Gromov-Witten invariants. In: Arbarello E., Ellingsrud G., Göttsche L. (eds.) Intersection theory and moduli, ICTP Lecture Notes, XIX, 1–40. Abdus Salam International Center for Theoretical Physics, Trieste (2004)

  3. Bertram A., Daskalopoulos G., Wentworth R.: Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians. J. Am. Math. Soc. 9(2), 529–571 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Castravet A.M.: Rational families of vector bundles on curves. Int. J. Math 15(1), 13–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Choe I., Choy J., Kiem Y.H.: Cohomology of the moduli space of Hecke cycles. Topology 44(3), 585–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Desale, U.V., Ramanan, S.: Classification of vector bundles of rank 2 on hyperelliptic curves. Invent. Math. 38(2), 161–185 (1976/1977)

    Google Scholar 

  7. Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les Schémas de Hilbert. Séminaire Bourbaki. 1960/61, Exp.221, Astérisque hors série 6, Soc. Math. Fr. (1997)

  8. Hwang J.M.: Tangent vectors to Hecke curves on the moduli space of rank 2 bundles over an algebraic curve. Duke Math. J. 101(1), 179–187 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hwang, J.M.: Hecke curves on the moduli space of vector bundles over an algebraic curve. In: Algebraic Geometry in East Asia (Kyoto, 2001), pp. 155–164. World Scientific (2002)

  10. Hwang, J.M., Ramanan, S.: Hecke curves and Hitchin discriminant. Ann. Sci. Éc. Norm. Sup. (4). 37(5), 801–817 (2004)

    Google Scholar 

  11. Kiem Y.H.: Hecke correspondence, stable maps, and Kirwan desingularization. Duke Math. J. 136(3), 585–618 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kilaru S.: Rational curves on moduli spaces of vector bundles. Proc. Indian Acad. Sci. Math. Sci. 108, 217–226 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kollár, J.: Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin (1996)

  14. Li J., Tian G.: The quantum cohomology of homogeneous varieties. J. Algebr. Geom. 6(2), 269–305 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Maruyama, M.: Elementary transformations in the theory of algebraic vector bundles. In: Algebraic Geometry (La Rábida, 1981). Lecture Notes in Math. vol. 961, pp. 241–266, Springer, Berlin (1982)

  16. Mata-Gutiérrez, O.: On (k, l)-stable vector bundles over algebraic curves. arXiv:1202.1632.

  17. Mok N., Sun X.T.: Remarks on lines and minimal rational curves. Sci. China Ser. A 52((4), 617–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Munoz V.: Quantum cohomology of the moduli space of stable bundles over a Riemann surface. Duke Math. J. 98(3), 525–540 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Narasimhan M.S., Ramanan S.: Deformations of the moduli of vector bundles. Ann. Math. 101, 391–417 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Narasimhan, M.S., Ramanan, S.: Geometry of Hecke cycles-1. In: Ramanathan K., Ramanujam C.P. (eds.) A tribute. Tata Institute of Fundamental Research Studies in Mathematics, vol. 8, pp. 291–345. Springer, Berlin (1978)

  21. Newstead P.E.: A non-existence theorem for families of stable bundles. J. London Math. Soc. 6, 259–266 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pandharipande, R., Thomas, R.P.: 13/2 ways of counting curves. arXiv:1111.1552

  23. Ramanan S.: The moduli spaces of vector bundles over an algebraic curve. Math. Ann. 200, 69–84 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun X.: Minimal rational curves on moduli spaces of stable bundles. Math. Ann. 331, 925–937 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tyurin A.N.: The geometry of moduli of vector bundles. Uspekhi Mat. Nauk 29, 59–88 (1974)

    MATH  Google Scholar 

  26. Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian. In: Yau S.T. (ed.) Geometry, topology and physics. Conference Proceedings and Lectures Notes in Geometry and Topology IV, pp. 357–422. International Press, Cambridge (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brambila-Paz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brambila-Paz, L., Mata-Gutiérrez, O. On the Hilbert scheme of the moduli space of vector bundles over an algebraic curve. manuscripta math. 142, 525–544 (2013). https://doi.org/10.1007/s00229-013-0618-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-013-0618-x

Mathematics Subject Classification (2000)

Navigation