Skip to main content
Log in

One-day front-loading with four doses of rabeprazole followed by a standard twice-daily regimen provides sufficient acid inhibition in extensive metabolizers of CYP2C19

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Four times daily dosing (qid) with a proton pump inhibitor can cause rapid increase in intragastric pH. We investigated the efficacy of the front-loading with rabeprazole 10 mg qid on a subsequent regimen with rabeprazole 10 mg twice daily (bid) for 7 days in extensive metabolizers (EMs) of CYP2C19.

Methods

Five EMs received three different 1-week regimens in a crossover manner as follows: (1) rabeprazole 10 mg bid for 7 days; (2) a front-loading regimen of rabeprazole (rabeprazole 10 mg qid on day 0 and bid on days 1 to 7); and (3) rabeprazole 10 mg qid for 7 days. Five intermediate metabolizers (IMs) and four poor metabolizers (PMs) received rabeprazole 10 mg bid regimen only. Twenty-four-hour intragastric pH-monitorings were performed on days 1, 4, and 7. Area under the intragastric pH-time curves (AUCs) from days 1 to 7 was calculated using 24-h median intragastric pHs on days 1, 4, and 7.

Results

Twenty-four-hour intragastric pHs in the front-loading group on days 1, 4, and 7 were 5.1, 4.9, and 5.1, respectively. The median AUC with front-loading in EMs (34.4, pH·day) was significantly higher than that in EMs with rabeprazole 10 mg bid (30.74, p = 0.043). No statistically significant differences in median AUCs were noted among front-loading in EMs, rabeprazole 10 mg qid in EMs (37.2), rabeprazole 10 mg bid in IMs (37.3), and PMs (39.4).

Conclusions

The one-day front-loading regimen of rabeprazole 10 mg qid provided sufficient acid inhibition for 7 days, even in CYP2C19 EMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EM:

Extensive metabolizer

H. pylori :

Helicobacter pylori

IM:

Intermediate metabolizer

PPI:

Proton pump inhibitor

PM:

Poor metabolizer

References

  1. Walsh JH, Peterson WL (1995) The treatment of Helicobacter pylori infection in the management of peptic ulcer disease. N Engl J Med 333(15):984–991

    Article  CAS  PubMed  Google Scholar 

  2. Furuta T et al (2002) Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin Pharmacol Ther 72(4):453–460

    Article  CAS  PubMed  Google Scholar 

  3. Furuta T et al (2005) Influence of CYP2C19 polymorphism and Helicobacter pylori genotype determined from gastric tissue samples on response to triple therapy for H. pylori infection. Clin Gastroenterol Hepatol 3(6):564–573

    Article  CAS  PubMed  Google Scholar 

  4. Sugimoto M et al (2007) Evidence that the degree and duration of acid suppression are related to Helicobacter pylori eradication by triple therapy. Helicobacter 12(4):317–323

    Article  CAS  PubMed  Google Scholar 

  5. Current European concepts in the management of Helicobacter pylori infection. The maastricht consensus report (1997) European Helicobacter pylori study group. Gut 41(1):8–13

    Article  Google Scholar 

  6. Asaka M et al (2010) Guidelines for the management of Helicobacter pylori infection in Japan: 2009 revised edition. Helicobacter 15(1):1–20

    Article  CAS  PubMed  Google Scholar 

  7. Satoh K (2002) Indications for Helicobacter pylori eradication therapy and first-line therapy regimen in Japan: recommendation by the Japanese Society for Helicobacter Research. J Gastroenterol 37(Suppl 13):34–38

    Article  CAS  PubMed  Google Scholar 

  8. Grayson ML et al (1989) Effect of varying pH on the susceptibility of Campylobacter pylori to antimicrobial agents. Eur J Clin Microbiol Infect Dis 8(10):888–889

    Article  CAS  PubMed  Google Scholar 

  9. Hunt RH (1993) pH and Hp–gastric acid secretion and Helicobacter pylori: implications for ulcer healing and eradication of the organism. Am J Gastroenterol 88(4):481–483

    CAS  PubMed  Google Scholar 

  10. Heifets LB, Lindholm-Levy PJ, Comstock RD (1992) Clarithromycin minimal inhibitory and bactericidal concentrations against Mycobacterium avium. Am Rev Respir Dis 145(4 Pt 1):856–858

    Article  CAS  PubMed  Google Scholar 

  11. Scott D et al (1998) The life and death of Helicobacter pylori. Gut 43(Suppl 1):S56–S60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Scott DR et al (1998) The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114(1):58–70

    Article  CAS  PubMed  Google Scholar 

  13. Marcus EA et al (2012) The effects of varying acidity on Helicobacter pylori growth and the bactericidal efficacy of ampicillin. Aliment Pharmacol Ther 36(10):972–979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sohn DR et al (1992) Disposition kinetics and metabolism of omeprazole in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation recruited from an Oriental population. J Pharmacol Exp Ther 262(3):1195–1202

    CAS  PubMed  Google Scholar 

  15. Chiba K et al (1993) Oxidative metabolism of omeprazole in human liver microsomes: cosegregation with S-mephenytoin 4’-hydroxylation. J Pharmacol Exp Ther 266(1):52–59

    CAS  PubMed  Google Scholar 

  16. Pearce RE et al (1996) Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther 277(2):805–816

    CAS  PubMed  Google Scholar 

  17. Sohn DR et al (1997) Metabolic disposition of lansoprazole in relation to the S-mephenytoin 4′-hydroxylation phenotype status. Clin Pharmacol Ther 61(5):574–582

    Article  CAS  PubMed  Google Scholar 

  18. Chang M et al (1995) Interphenotype differences in disposition and effect on gastrin levels of omeprazole—suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 39(5):511–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kubota T, Chiba K, Ishizaki T (1996) Genotyping of S-mephenytoin 4′-hydroxylation in an extended Japanese population. Clin Pharmacol Ther 60(6):661–666

    Article  CAS  PubMed  Google Scholar 

  20. Ishizaki T, Horai Y (1999) Review article: cytochrome P450 and the metabolism of proton pump inhibitors–emphasis on rabeprazole. Aliment Pharmacol Ther 13(Suppl 3):27–36

    Article  CAS  PubMed  Google Scholar 

  21. Kurzawski M et al (2006) Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients. Eur J Clin Pharmacol 62(10):877–880

    Article  CAS  PubMed  Google Scholar 

  22. Sugimoto K et al (2008) Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 65(3):437–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sugimoto M et al (2004) Different dosage regimens of rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotype status. Clin Pharmacol Ther 76(4):290–301

    Article  CAS  PubMed  Google Scholar 

  24. Sugimoto M et al (2005) Comparison of an increased dosage regimen of rabeprazole versus a concomitant dosage regimen of famotidine with rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotypes. Clin Pharmacol Ther 77(4):302–311

    Article  CAS  PubMed  Google Scholar 

  25. Shirai N et al (2001) Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment Pharmacol Ther 15(12):1929–1937

    Article  CAS  PubMed  Google Scholar 

  26. Furuta T et al (1999) CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther 65(5):552–561

    Article  CAS  PubMed  Google Scholar 

  27. Furuta T et al (2001) Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther 69(3):158–168

    Article  CAS  PubMed  Google Scholar 

  28. Sugimoto M et al (2014) Comparison of acid inhibition with standard dosages of proton pump inhibitors in relation to CYP2C19 genotype in Japanese. Eur J Clin Pharmacol 70(9):1073–1078

    Article  CAS  PubMed  Google Scholar 

  29. Yasuda S et al (1995) Comparison of the kinetic disposition and metabolism of E3810, a new proton pump inhibitor, and omeprazole in relation to S-mephenytoin 4′-hydroxylation status. Clin Pharmacol Ther 58(2):143–154

    Article  CAS  PubMed  Google Scholar 

  30. Horai Y et al (2001) Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment Pharmacol Ther 15(6):793–803

    Article  CAS  PubMed  Google Scholar 

  31. Sugimoto M et al (2012) Rabeprazole 10 mg q.d.s. decreases 24-h intragastric acidity significantly more than rabeprazole 20 mg b.d. or 40 mg o.m., overcoming CYP2C19 genotype. Aliment Pharmacol Ther 36(7):627–634

    Article  CAS  PubMed  Google Scholar 

  32. Miehlke S et al (2003) A prospective, randomized study of quadruple therapy and high-dose dual therapy for treatment of Helicobacter pylori resistant to both metronidazole and clarithromycin. Helicobacter 8(4):310–319

    Article  CAS  PubMed  Google Scholar 

  33. Furuta T et al (2001) Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin. Pharmacogenetics 11(4):341–348

    Article  CAS  PubMed  Google Scholar 

  34. Furuta T et al (2003) High-dose rabeprazole/amoxicillin therapy as the second-line regimen after failure to eradicate H. pylori by triple therapy with the usual doses of a proton pump inhibitor, clarithromycin and amoxicillin. Hepato-Gastroenterology 50(54):2274–2278

    CAS  PubMed  Google Scholar 

  35. Shirai N et al (2007) Dual therapy with high doses of rabeprazole and amoxicillin versus triple therapy with rabeprazole, amoxicillin, and metronidazole as a rescue regimen for Helicobacter pylori infection after the standard triple therapy. Eur J Clin Pharmacol 63(8):743–749

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki S et al (2012) Development of a novel, fully-automated genotyping system: principle and applications. Sensors (Basel) 12(12):16614–16627

    Article  CAS  Google Scholar 

  37. Furuta T et al (2007) Pharmacogenomics-based tailored versus standard therapeutic regimen for eradication of H. pylori. Clin Pharmacol Ther 81(4):521–528

    Article  CAS  PubMed  Google Scholar 

  38. Sahara S et al (2015) Potent gastric acid inhibition over 24 hours by 4-times daily dosing of esomeprazole 20 mg. Digestion 91(4):277–285

    Article  CAS  PubMed  Google Scholar 

  39. Zvyaga T et al (2012) Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19. Drug Metab Dispos 40(9):1698–1711

    Article  CAS  PubMed  Google Scholar 

  40. Saitoh T et al (2002) Effects of rabeprazole, lansoprazole and omeprazole on intragastric pH in CYP2C19 extensive metabolizers. Aliment Pharmacol Ther 16(10):1811–1817

    Article  CAS  PubMed  Google Scholar 

  41. Fock KM et al (2005) Rabeprazole vs esomeprazole in non-erosive gastro-esophageal reflux disease: a randomized, double-blind study in urban Asia. World J Gastroenterol 11(20):3091–3098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ramsjo M et al (2010) CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol 66(9):871–877

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

The First Department of Medicine and the Center for Clinical Research at Hamamatsu University School of Medicine have received grants from Takeda Pharmaceutical Co., Ltd., AstraZeneca KK, Eisai Co., Ltd., and Daiichi-Sankyo Co. Ltd. The authors have no other conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Furuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagami, T., Sugimoto, M., Ichikawa, H. et al. One-day front-loading with four doses of rabeprazole followed by a standard twice-daily regimen provides sufficient acid inhibition in extensive metabolizers of CYP2C19. Eur J Clin Pharmacol 71, 1467–1475 (2015). https://doi.org/10.1007/s00228-015-1941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1941-9

Keywords

Navigation