Skip to main content
Log in

Prevention of vancomycin induced nephrotoxicity: a review of preclinical data

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Several strategies have been proposed for the prevention of vancomycin-induced nephrotoxicity. Here, we review available evidence supporting the respective strategies.

Method

Data were collected by searching the Scopus, PubMed, and Medline databases and the Cochrane database of systematic reviews. The key words used as search terms were “vancomycin,” “nephrotoxicity”, “renal failure,” “renal damage,” “nephroprotective,” “renoprotective”, and “prevention.” Prospective or retrospective observational animal studies that evaluated the effects of a modality for the prevention of vancomycin-induced nephrotoxicity was included.

Results and conclusion

Animal studies show beneficial effects of various antioxidants, such as erdosteine, vitamin E, vitamin C, N-acetylcysteine, caffeic acid phenethyl ester, and erythropoietin, in the prevention of vancomycin-induced nephrotoxicity. However, before these agents can be used in clinical practice, their potential benefits must be confirmed in future randomized controlled human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodoshima N, Masuda S, Inui K (2007) Decreased renal accumulation and toxicity of a new VCM formulation in rats with chronic renal failure. Drug Metab Pharmacokinet 22:419–427

    Article  PubMed  CAS  Google Scholar 

  2. Bailie GR, Neal D (1998) Vancomycin ototoxicity and nephrotoxicity, a review. Med Toxicol 3:376–386

    Article  Google Scholar 

  3. Lodise TP, PatelN LBM, Rodvold KA, Drusano GL (2009) Relationship between initial vancomycin concentration–time profile and nephrotoxicity. Clini Infect Dis 49:507–514

    Article  CAS  Google Scholar 

  4. Lodise TP, Lomaestro B, Graves J, Drusano GL (2008) Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52(4):1330–1336

    Article  PubMed  CAS  Google Scholar 

  5. Elting LS, Rubenstein EB, Kurtin D (1998) Mississippi mud in the 1990s: Risks and outcomes of vancomycin-associated toxicity in general oncology practice. Cancer 83(12):2597–2607

    Article  PubMed  CAS  Google Scholar 

  6. Newton P (2004) The role of monitoring serum vancomycin concentrations. Phatol 2(2):1–2

    Google Scholar 

  7. Ingram PR, Lye DC, Tambyah PA, Goh WP, Tam VH, Da F (2008) Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. Antimicrob Agents Chemother 62:168–171

    Article  CAS  Google Scholar 

  8. Moellering RC (2006) Vancomycin: A 50-year reassessment. Clin Infect Dis 1S:3–4

    Article  Google Scholar 

  9. Levine DP (2006) Vancomycin: A history. Clin Infect Dis 42[S1]:5–12

    Article  Google Scholar 

  10. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A (2012) Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 68(9):1243–1255

    Google Scholar 

  11. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38(12):1673–1681

    Google Scholar 

  12. Wilcox MH, Tack KJ, Bouza E (2009) Complicated skin and skin-structure infections and catheter related bloodstream infections: Noninferiority of linezolid in a phase 3 study. Clin Infect Dis 48(2):203–212

    Article  PubMed  CAS  Google Scholar 

  13. Minejima E, Choi J, Beringer P, Lou M, Tse E, Wong-Beringer A (2011) Applying new diagnostic criteria for acute kidney injury to facilitate early identification of nephrotoxicity in vancomycin-treated patients. Antimicrob Agents Chemother 55(7):3278–3283

    Google Scholar 

  14. Toyoguchi T, Takahashi S, Hosoya J, Nakagawa Y, Watanabe H (1997) Nephrotoxicity of vancomycin and drug interaction study with cilastatin in rabbits. Antimicrob Agents Chemother 41:1985–1990

    PubMed  CAS  Google Scholar 

  15. Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Ogino T, Inoue M, Okada S, Kinoshita H (2003) Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res 37(4):272–279

    Article  Google Scholar 

  16. Oktema F, Arslan FK, Ozguner F, Candir O, Yilmaz HR, Ciris M, Uz E (2005) In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: Protection by erdosteine. Toxicology 215:227–233

    Article  Google Scholar 

  17. King DW, Smith MA (2004) Proliferative responses observed following vancomycin treatment in renal proximal tubule epithelial cells. Toxicology 18:797–803

    CAS  Google Scholar 

  18. Celik I, Cihangiroglu M, Ilhan N, Akpolat N, Akbulut HH (2005) Protective effects of different antioxidants and amrinone on vancomycin-induced nephrotoxicity. Basic Clin Pharmacol Toxicol 97:325–332

    Article  PubMed  CAS  Google Scholar 

  19. Cetin H, Olgar S, Oktem F (2007) Novel evidence suggesting an antioxidant property for erythropoietin on vancomycin-induced nephrotoxicity in a rat model. Clin Exp Pharmacol Physiol 34:1181–1185

    PubMed  CAS  Google Scholar 

  20. Hodoshima N, Nakano Y, Izumi M (2004) Protective effect of inactive ingredients against nephrotoxicity of vancomycin hydrochloride in rats. Drugs Metab Pharmacokinet 19(1):68–75

    Article  CAS  Google Scholar 

  21. Ladino M, Alex M, Schulman IH (2008) Acute and reversible vancomycin nephrotoxicity: A case series. J Nephrol Ren Transplant 3:4–10

    Google Scholar 

  22. Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Tanaka H, Inoue M, Okada S, Kinoshita H (2002) Inhibition of vancomycin-induced nephrotoxicity by targeting superoxide dismutase to renal proximal tubule cells in the rat. Redox Rep 7(5):317–319

    Article  PubMed  CAS  Google Scholar 

  23. Abraham NG, Asija A, Drummond G, Peterson S (2007) Heme oxygenase-1 gene therapy: Recent advances and therapeutic applications. CurrGene Ther 7(2):89–108

    Article  PubMed  CAS  Google Scholar 

  24. Scandalios JG (2005) Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazi J Med Biol Res 38(7):995–1014

    Article  CAS  Google Scholar 

  25. Hazlewood KA, Brouse SD, Pitcher WD, Hall RG (2010) Vancomycin-associated nephrotoxicity: Grave concern or death by character assassination? Am J Med 123(2):182–193

    Article  PubMed  CAS  Google Scholar 

  26. Dieterich C, Puey A, Lyn S, Swezey R, Furimsky A, Fairchild D, Mirsalis JC, Ng HH (2009) Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol Sci 107(1):258–269

    Article  PubMed  CAS  Google Scholar 

  27. Fanos V, Cataldi L (2001) Renal transport of antibiotics and nephrotoxicity: A review. J Chemother 13(5):461–472

    PubMed  CAS  Google Scholar 

  28. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A (2006) High-dose vancomycin therapy for methicillin-resistant staphylococcus aureus infections. Arch Intern Med 166:2138–2144

    Article  PubMed  Google Scholar 

  29. Hermsen ED, Hanson M, Sankaranarayanan J, Stoner JA, Florescu MC, Rupp ME (2010) Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin Drug Saf 9:9–14

    Article  PubMed  CAS  Google Scholar 

  30. Dechant KL, Noble S (1996) Erdosteine. Drugs 52:875–881

    Article  PubMed  CAS  Google Scholar 

  31. Young IS, Woodside IS (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    Article  PubMed  CAS  Google Scholar 

  32. Kumar KV, Naidu MU, Shifow AA, Prayag A, Ratnakar KS (1999) Melatonin: An antioxidant protects against cyclosporine-induced nephrotoxicity. Transplantation 67:1065–1068

    Article  PubMed  CAS  Google Scholar 

  33. Fukaya H, Kanno H (1999) Experimental studies of the protective effect of ginkgo biloba extract (Ginko biloba extract) on cisplatin- induced toxicity in rats. Nippon Jibiinkoka Gakkai Kaiho 102:907–917

    Article  PubMed  CAS  Google Scholar 

  34. Carlini RG, Reyes AA, Rothstein M (1995) Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 47:740–745

    Article  PubMed  CAS  Google Scholar 

  35. Westenfelder C, Biddle DL, Baranowski RL (1999) Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int 55:808–820

    Article  PubMed  CAS  Google Scholar 

  36. Sharples EJ, Patel N, Brown P et al (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia–reperfusion. J Am Soc Nephrol 15:2115–2124

    Article  PubMed  CAS  Google Scholar 

  37. Badary OA, Nagi MN, al-Shabanah OA, al-Sawaf HA, al-Sohaibani MO, al-Bekairi AM (1997) Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 75(12):1356–1361

    Google Scholar 

  38. Basarslan F, Yilmaz N, Ates S, Ozgur T, Tutanc M, Motor VK, Arica V, Yilmaz C, Inci M, Buyukbas S (2012) Protective effects of thymoquinone on vancomycin-induced nephrotoxicity in rats. Hum Exp Toxicol 31(7):726–733

    Article  PubMed  Google Scholar 

  39. Parlakpinar H, Tasdemir S, Polat A et al (2005) Protective role of caffeic acid phenethyl ester (CAPE) on gentamicin-induced acute renal toxicity in rats. Toxicology 207:169–177

    Article  PubMed  CAS  Google Scholar 

  40. Loong CC, Chang YH, Wu TH et al (2004) Antioxidant supplementation may improve renal transplant function: A preliminary report. Transplant Proc 36:2438–2439

    Article  PubMed  CAS  Google Scholar 

  41. Kadkhodaee M, Khastar H, Faghihi M, Ghaznavi R, Zahmatkesh M (2005) Effects of co-supplementation of vitamins E and C on gentamicin-induced nephrotoxicity in rat. Exp Physiol 90:571–576

    Article  PubMed  CAS  Google Scholar 

  42. Mazzon E, Britti D, De Sarro A, Caputi AP, Cuzzocrea S (2001) Effect of N-acetylcysteine on gentamicin-mediated nephropathy in rats. Eur J Pharmacol 424:75–83

    Article  PubMed  CAS  Google Scholar 

  43. Ocak S, Gorur S, Hakverdi S, Celik S, Erdogen S (2007) Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 100:328–333

    Article  PubMed  CAS  Google Scholar 

  44. Naik RS, Mujumdar AM, Ghaskadbi S (2004) Protection of liver cells from ethanol cytotoxicity by curcumin in liver slice culture in vitro. J Ethnopharmacol 95:31–37

    Article  PubMed  CAS  Google Scholar 

  45. Ahmida MH (2012) Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats. Exp Toxicol Pathol 64(3):149–153

    Google Scholar 

  46. Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress . Pharmacol Ther 126 (2):119–145

    Google Scholar 

  47. Graziano JH, Grady RW, Cerami A (1974) The identification of 2,3-dihroxybenzoic acid as a potentially useful iron-chelating drug. J Pharmacol Exp Ther 190(3):570–575

    Google Scholar 

  48. Naghibi B, Ghafghazi T, Hajhashemi V, Talebi A (2007) The effect of 2,3-dihydroxybenzoic acid and tempol in prevention of vancomycin-induced nephrotoxicity in rats. Toxicology 232(3):192–199

    Article  PubMed  CAS  Google Scholar 

  49. Haendeler J, Hoffmann J, Zeiher AM, Stefanie D (2004) Antioxidant effects of statins via s-nitrosylation and activation of thioredoxin in endothelial cells a novel vasculoprotective function of statins. Circulation 110:856–861

    Article  PubMed  CAS  Google Scholar 

  50. Panonnummal R, Varkey J, Dinoop DR (2011) Protective effect of atorvastatin against vancomycin induced nephrotoxicity in albino rats. Pharmacie Globale 2(8):1–6

    Google Scholar 

  51. Zhang J, Dawson VL, Dawson TM Snyder SH (1994) Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263(5147):687–689

    Google Scholar 

  52. Dalaklioglu S, Tekcan M, Gungor NE, Celik-Ozenci C, Aksoy NH, Baykal A, Tasatargil A (2010) Role of the poly(ADP-ribose)polymerase activity in vancomycin-induced renal injury. Toxicol Lett 192:91–96

    Article  PubMed  CAS  Google Scholar 

  53. Nishikawa M, Nagatomi H, Chang BJ, Sato E, Inoue M (2001) Targeting superoxide dismutase to renal proximal tubule cells inhibits mitochondrial injury and renal dysfunction induced by cisplatin. Arch Biochem Biophys 387:78–84

    Article  PubMed  CAS  Google Scholar 

  54. Toyoguchi T, Nakagawa Y (1996) Nephrotoxicity and drug interaction of vancomycin. Nippon Yakurigaku Zasshi 107(5):225–235

    Article  PubMed  CAS  Google Scholar 

  55. Nakamura T, Hashimoto Y, Kohuryo T, Inui K (1998) Effects of fosfomycin and imipenem–cilastatin on nephrotoxicity and renal excretion of vancomycin in rats. Pharmaceut Res 15(5):734–738

    Article  CAS  Google Scholar 

  56. Yoshiyama Y, Yazaki T, Wong PC, Beauchamp D, Kanke M (2001) The effect of fosfomycin on glycopeptide antibiotic-induced nephrotoxicity in rats. J Infect Chemother 7(4):243–246

    Article  PubMed  CAS  Google Scholar 

Download references

Competing interests

None.

Funding

None.

Ethical Approval

Not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elyasi, S., Khalili, H., Hatamkhani, S. et al. Prevention of vancomycin induced nephrotoxicity: a review of preclinical data. Eur J Clin Pharmacol 69, 747–754 (2013). https://doi.org/10.1007/s00228-012-1406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1406-3

Keywords

Navigation