Skip to main content
Log in

Decreased vancomycin clearance in patients with congestive heart failure

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Congestive heart failure (CHF) alters the pharmacokinetics of various drugs, including cardiovascular agents, due to decreased cardiac output and decreased renal blood flow. The purpose of this study was to evaluate the influence of CHF on the clearance of vancomycin, a glycopeptide antibacterial agent.

Methods

After reviewing more than 1,500 clinical charts of patients who received vancomycin therapy and whose serum vancomycin level was monitored, we identified 101 patients who also had the left ventricular ejection fraction (LVEF) assessed at that time. The fluorescence polarization immunoassay method was used to measure vancomycin serum concentrations in these patients 1 h after the end of vancomycin infusion and just before the next administration. Using these two measurements, we calculated the pharmacokinetic parameters using the Bayesian estimator.

Results

Patients with an LVEF of <40 % (16 patients) or those with an LVEF of ≥ 40 %  and <60 % (40 % ≤ LVEF < 60 % ; 32 patients) had a significantly lower vancomycin clearance than patients with LVEF of ≥60 % (53 patients) (2.29 ± 0.95 or 2.79 ± 0.99 vs. 3.50 ± 1.04 L/h; p < 0.001 or p < 0.01, respectively). Vancomycin clearance was strongly correlated not only with estimated creatinine clearance (CLcr) in patients with an LVEF of <40 % (r = 0.828) and 40 % ≤ LVEF < 60 % (r = 0.773), but also with an LVEF in patients with a CLcr of <60 mL/min (r = 0.646). Consistent with these findings, multiple regression analysis revealed that CLcr, LVEF and body weight were important independent variables for vancomycin clearance (r 2 = 0.649).

Conclusions

Vancomycin clearance decreased with decreasing cardiac function (LVEF) and decreasing CLcr. This finding suggests that vancomycin clearance is affected by cardiac function and would be predicted not only CLcr but also by LVEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brumfitt W, Hamilton-Miller J (1989) Methicillin-resistant Staphylococcus aureus. N Engl J Med 320(18):1188–1196

    Article  PubMed  CAS  Google Scholar 

  2. Paradisi F, Corti G, Messeri D (2001) Antistaphylococcal (MSSA, MRSA, MSSE, MRSE) antibiotics. Med Clin N Am 85(1):1–17

    Article  PubMed  CAS  Google Scholar 

  3. Kirby WM (1984) Vancomycin therapy of severe staphylococcal infections. J Antimicrob Chemother 14[Suppl D]:73–78

    Article  PubMed  Google Scholar 

  4. Klastersky J, Van der Auwera P (1986) Cephalosporins, vancomycin, aminoglycosides and other drugs, especially in combination, for the treatment of methicillin-resistant staphylococcal infections. J Antimicrob Chemother 17[Suppl A]:19–24

    Article  PubMed  Google Scholar 

  5. Matzke GR, Zhanel GG, Guay DR (1986) Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 11(4):257–282

    Article  PubMed  CAS  Google Scholar 

  6. Matzke GR, McGory RW, Halstenson CE, Keane WF (1984) Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother 25(4):433–437

    Article  PubMed  CAS  Google Scholar 

  7. Rodvold KA, Blum RA, Fischer JH, Zokufa HZ, Rotschafer JC, Crossley KB, Riff LJ (1988) Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother 32(6):848–852

    Article  PubMed  CAS  Google Scholar 

  8. Wenk M, Vozeh S, Follath F (1984) Serum level monitoring of antibacterial drugs. A review. Clin Pharmacokinet 9(6):475–492

    Article  PubMed  CAS  Google Scholar 

  9. Saunders NJ (1995) Vancomycin administration and monitoring reappraisal. J Antimicrob Chemother 36(2):279–282

    Article  PubMed  CAS  Google Scholar 

  10. MacGowan AP (1998) Pharmacodynamics, pharmacokinetics, and therapeutic drug monitoring of glycopeptides. Ther Drug Monit 20(5):473–477

    Article  PubMed  CAS  Google Scholar 

  11. Lewis B, Barr R, Vinay V (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. AAA 5:445–479

    Google Scholar 

  12. Shammas FV, Dickstein K (1988) Clinical pharmacokinetics in heart failure. An updated review. Clin Pharmacokinet 15(2):94–113

    Article  PubMed  CAS  Google Scholar 

  13. Woosley RL (1987) Pharmacokinetics and pharmacodynamics of antiarrhythmic agents in patients with congestive heart failure. Am Heart J 114(5):1280–1291

    Article  PubMed  CAS  Google Scholar 

  14. Naafs MA, van der Hoek C, van Duin S, Koorevaar G, Schopman W, Silberbusch J (1985) Decreased renal clearance of digoxin in chronic congestive heart failure. Eur J Clin Pharmacol 28(3):249–252

    Article  PubMed  CAS  Google Scholar 

  15. Pfisterer ME, Battler A, Zaret BL (1985) Range of normal values for left and right ventricular ejection fraction at rest and during exercise assessed by radionuclide angiocardiography. Eur Heart J 6(8):647–655

    PubMed  CAS  Google Scholar 

  16. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346(24):1845–1853

    Article  PubMed  Google Scholar 

  17. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350(21):2140–2150

    Article  PubMed  CAS  Google Scholar 

  18. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352(15):1539–1549

    Article  PubMed  CAS  Google Scholar 

  19. Yasuhara M, Iga T, Zenda H, Okumura K, Oguma T, Yano Y, Hori R (1998) Population pharmacokinetics of vancomycin in Japanese adult patients. Ther Drug Monit 20(2):139–148

    Article  PubMed  CAS  Google Scholar 

  20. Ducharme MP, Slaughter RL, Edwards DJ (1994) Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight. Ther Drug Monit 16(5):513–518

    Article  PubMed  CAS  Google Scholar 

  21. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41

    Article  PubMed  CAS  Google Scholar 

  22. Rushmer RF (1976) Cardiovascular dynamics. W.B. Saunders, Philadelphia

    Google Scholar 

  23. Winter ME (2004) Basic clinical pharmacokinetics, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  24. Bock JS, Gottlieb SS (2010) Cardiorenal syndrome: new perspectives. Circulation 121(23):2592–2600

    Article  PubMed  Google Scholar 

  25. Longhini C, Molino C, Fabbian F (2010) Cardiorenal syndrome: still not a defined entity. Clin Exp Nephrol 14(1):12–21

    Article  PubMed  Google Scholar 

  26. Moellering RC Jr, Krogstad DJ, Greenblatt DJ (1981) Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med 94(3):343–346

    PubMed  Google Scholar 

  27. Buelga DS, del Mar Fernandez de Gatta M, Herrera EV, Dominguez-Gil A, Garcia MJ (2005) Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrob Agents Chemother 49(12):4934–4941

    Article  PubMed  CAS  Google Scholar 

  28. Thomson AH, Staatz CE, Tobin CM, Gall M, Lovering AM (2009) Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations. J Antimicrob Chemother 63(5):1050–1057

    Article  PubMed  CAS  Google Scholar 

  29. Llopis-Salvia P, Jimenez-Torres NV (2006) Population pharmacokinetic parameters of vancomycin in critically ill patients. J Clin Pharm Ther 31(5):447–454

    Article  PubMed  CAS  Google Scholar 

  30. del MarFernandezdeGattaGarcia M, Revilla N, Calvo MV, Dominguez-Gil A, Sanchez Navarro A (2007) Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 33(2):279–285

    Article  Google Scholar 

  31. Koch-Weser J (1971) Pharmacokinetic of procainamide in man. Ann N Y Acad Sci 179:370–382

    Article  PubMed  CAS  Google Scholar 

  32. Bonde J, Angelo HR, Bodtker S, Svendsen TL, Kampmann JP (1985) Kinetics of disopyramide after intravenous infusion to patients with myocardial infarction and heart failure. Acta Pharmacol Toxicol (Copenh) 56(4):278–282

    Article  CAS  Google Scholar 

  33. Thomson PD, Melmon KL, Richardson JA, Cohn K, Steinbrunn W, Cudihee R, Rowland M (1973) Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Ann Intern Med 78(4):499–508

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tomohiro Taniguchi for his valuable comments.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Shimamoto.

Appendix

Appendix

Fig. 3
figure 3

Relationship between LVEF and CLcr

Fig. 4
figure 4

Relationship between vancomycin clearance and LVEF

Fig. 5
figure 5

Relationship between vancomycin clearance and CLcr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimamoto, Y., Fukuda, T., Tominari, S. et al. Decreased vancomycin clearance in patients with congestive heart failure. Eur J Clin Pharmacol 69, 449–457 (2013). https://doi.org/10.1007/s00228-012-1340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1340-4

Keywords

Navigation