Skip to main content

Advertisement

Log in

Abundant bioluminescent sources of low-light intensity in the deep Mediterranean Sea and North Atlantic Ocean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Light plays a critical role in the functioning of the marine environment. In the dark ocean, bioluminescent organisms are the only visually relevant sources of light. Cameras of different sensitivities were used to compare the density of pelagic bioluminescent sources (BL) of different light intensities at a regional scale: the image-intensified charge-coupled device for deep-sea research (ICDeep), an image-intensified silicon intensifier target (ISIT) camera and a silicon intensifier target (SIT) camera. Pelagic ICDeep values were higher than ISIT measurements by a mean factor of 7.6 in the Mediterranean Sea and 3.5 in the Atlantic Ocean. Atlantic ISIT values were higher than SIT values by a mean factor of 4.5. Standardising bioluminescence measurements to the near-seafloor (0–400 m above bottom) layer, BLNSF, a logarithmic decrease with depth was observed from three independent datasets (slopes not significantly different): ISIT (Atlantic, Mediterranean), ICDeep (Mediterranean). Intercepts from ICDeep measurements were higher than ISIT measurements by a factor of 4.4. From these trends, a conversion factor to calculate benthopelagic plankton biomass from near-seafloor BLNSF density was derived. Calibration of the ICDeep enabled calculation of the minimum intensity of source visible to that camera. BLNSF sources of low-light intensity (≥1.4 × 10−7 W m−2) outnumber fourfold sources of greater intensity (>ca. 10−6 W m−2 (λpeak = 470 nm). This reveals a high abundance of low-light bioluminescent sources in the marine environment, with mean pelagic densities of 33.15 sources m−3 (Atlantic) and 6.79 sources m−3 (Mediterranean) between 500 and 1500 m depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguzzi J, Company JB (2010) Chronobiology of deep-water decapod crustaceans on continental margins. Adv Mar Biol 58:155–225

    Article  PubMed  Google Scholar 

  • Aguzzi J, Company JB, Costa C, Menesatti P, Garcia JA, Bahamon N, Puig P, Sardà F (2011) Activity rhythms in the deep-sea: a chronobiological approach. Front Biosci Landmark 16:131–150

    Article  Google Scholar 

  • Aguzzi J, Sbragaglia V, Tecchio S, Navarro J, Company JB (2015) Rhythmic behaviour of marine benthopelagic species and the synchronous dynamics of benthic communities. Deep Sea Res I 95:1–11

    Article  Google Scholar 

  • Andrews CC, Karl DM, Small LF, Fowler SW (1984) Metabolic activity and bioluminescence of oceanic faecal pellets and sediment trap particles. Nature 307:539–541

    Article  CAS  Google Scholar 

  • Angel MV (1990) Life in the benthic boundary layer: connections to the mid-water and sea floor. Philos Trans R Soc A 331(1616):15–28

    Article  Google Scholar 

  • Angel MV (2003) The pelagic environment of the open ocean. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam, pp 39–79

    Google Scholar 

  • Angel MV, Baker AdeC (1982) Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol Oceanogr 2(1):1–30

    Google Scholar 

  • Aoki T, Kitamura T, Matsuno S, Mitsui K, Ohashi Y, Okada A, Cady D, Learned J, O’Connor D, Dye S (1986) Background light measurements in the deep ocean. Il Nuovo Cim C 9(2):642–652

    Article  Google Scholar 

  • Arman P, Anvar S, Aslanides E et al (2000) Background light in potential sites for the ANTARES undersea neutrino telescope. Astropart Phys 13:127–136

    Article  Google Scholar 

  • Bailey D, Bagley P, Jamieson A, Cromarty A, Collins M, Tselepidis A, Priede I (2005) Life in a warm deep sea: routine activity and burst swimming performance of the shrimp Acanthephyra eximia in the abyssal Mediterranean. Mar Biol 146(6):1199–1206

    Article  Google Scholar 

  • Beckmann W (1988) The zooplankton community in the deep bathyal and abyssal zones of the eastern North Atlantic: preliminary results and data lists from MOCNESS hauls during cruise 08 of the RV “POLARSTERN”. Berichte zur Polarforschung (Rep Polar Res) 42:1–58. ISSN 01 76-5027

  • Bowlby M, Case J (1991) Flash kinetics and spatial patterns of bioluminescence in the copepod Gaussia princeps. Mar Biol 110(3):329–336

    Article  Google Scholar 

  • Bowlby MR, Widder EA, Case JF (1990) Patterns of stimulated bioluminescence in two pyrosomes (tunicata: Pyrosomatidae). Biol Bull 179(3):340–350

    Article  CAS  PubMed  Google Scholar 

  • Bowlby M, Widder E, Case J (1991) Disparate forms of bioluminescence from the amphipods Cyphocaris faurei, Scina crassicornis and S. borealis. Mar Biol 108(2):247–253

    Article  Google Scholar 

  • Bradner H, Bartlett M, Blackinton G, Clem J, Karl D, Learned J, Lewitus A, Matsuno S, O’Connor D, Peatman W (1987) Bioluminescence profile in the deep pacific ocean. Deep Sea Res A 34(11):1831–1840

    Article  Google Scholar 

  • Childress JJ (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol 10(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Christiansen B, Drüke B, Koppelmann R, Weikert H (1999) The near-bottom zooplankton at the abyssal BIOTRANS site, northeast Atlantic: composition, abundance and variability. J Plankton Res 21(10):1847–1863

    Article  Google Scholar 

  • Clarke G, Conover RJ, David CN, Nicol J (1962) Comparative studies of luminescence in copepods and other pelagic marine animals. J Mar Biol Assoc UK 42(03):541–564

    Article  Google Scholar 

  • Craig J, Jamieson AJ, Heger A, Priede IG (2009) Distribution of bioluminescent organisms in the Mediterranean Sea and predicted effects on a deep-sea neutrino telescope. Nucl Instrum Methods Phys Res A 602:224–226

    Article  CAS  Google Scholar 

  • Craig J, Jamieson AJ, Hutson R, Zuur AF, Priede IG (2010) Factors influencing the abundance of deep pelagic bioluminescent zooplankton in the Mediterranean Sea. Deep Sea Res I 57:1474–1484

    Article  CAS  Google Scholar 

  • Craig J, Jamieson AJ, Bagley PM, Priede IG (2011a) Naturally occurring bioluminescence on the deep sea floor. J Mar Syst 88(4):563–567

    Article  Google Scholar 

  • Craig J, Jamieson AJ, Bagley PM, Priede IG (2011b) Seasonal variation of deep-sea bioluminescence in the Ionian Sea. Nucl Instrum Methods Phys Res A. doi:10.1016/j.nima.2010.04.074

    Article  CAS  Google Scholar 

  • Craig J, Youngbluth M, Jamieson AJ, Priede IG (2015) Near seafloor bioluminescence, macrozooplankton and macroparticles at the Mid-Atlantic Ridge. Deep Sea Res I 98:62–75

    Article  Google Scholar 

  • Davis JW, Thosteson E, Frey L, Widder E (2005) Examination of bioluminescent excitation responses using empirical orthogonal function analysis. In: Proceedings of the MTS/IEEE OCEANS, pp 861–865

  • Denton E (1990) Light and vision at depths greater than 200 metres. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 127–148

    Google Scholar 

  • Folt CL, Burns CW (1999) Biological drivers of zooplankton patchiness. Trends Ecol Evol 14(8):300–305

    Article  CAS  PubMed  Google Scholar 

  • Gagnon YL, Sutton TT, Johnsen S (2013) Visual acuity in pelagic fishes and mollusks. Vis Res 92:1–9

    Article  PubMed  Google Scholar 

  • Gillibrand E, Jamieson A, Bagley P, Zuur A, Priede I (2007) Seasonal development of a deep pelagic bioluminescent layer in the temperate NE Atlantic ocean. Mar Ecol Prog Ser 341:37–44

    Article  Google Scholar 

  • Haddock SH, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493

    Article  Google Scholar 

  • Heger A, Ieno E, King N, Morris K, Bagley P, Priede I (2008) Deep-sea pelagic bioluminescence over the Mid-Atlantic Ridge. Deep Sea Res II 55(1):126–136

    Article  Google Scholar 

  • Herren CM, Alldredge AL, Case JF (2004) Coastal bioluminescent marine snow: fine structure of bioluminescence distribution. Cont Shelf Res 24(3):413–429

    Article  Google Scholar 

  • Herren CM, Haddock SH, Johnson C, Orrico CM, Moline MA, Case JF (2005) A multi-platform bathyphotometer for fine-scale, coastal bioluminescence research. Limnol Oceanogr Methods 3:247–262

    Article  CAS  Google Scholar 

  • Herring P (1983) The spectral characteristics of luminous marine organisms. Proc R Soc Lond B Biol Sci 220(1219):183–217

    Article  Google Scholar 

  • Herring PJ (1987) Systematic distribution of bioluminescence in living organisms. J Biolumin Chemilumin 1(3):147–163

    Article  CAS  PubMed  Google Scholar 

  • Herring PJ (1998) Bioluminescence: dolphins glow with the flow. Nature 393(6687):731–733

    Article  CAS  Google Scholar 

  • Johnsen S, Widder EA, Mobley CD (2004) Propagation and perception of bioluminescence: factors affecting counter illumination as a cryptic strategy. Biol Bull 207(1):1–16

    Article  PubMed  Google Scholar 

  • Land MF (1990) Optics of the eyes of marine animals. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 149–166

    Google Scholar 

  • Lapota D, Losee JR (1984) Observations of bioluminescence in marine plankton from the Sea of Cortez. J Exp Mar Biol Ecol 77(3):209–239

    Article  Google Scholar 

  • Latz MI, Bowlby MR, Case JF (1990) Recovery and stimulation of copepod bioluminescence. J Exp Mar Biol Ecol 136(1):1–22

    Article  Google Scholar 

  • Latz MI, Nauen JC, Rohr J (2004) Bioluminescence response of four species of dinoflagellates to fully developed pipe flow. J Plankton Res 26(12):1529–1546

    Article  Google Scholar 

  • Laver MB, Olsson MS, Edelman JL, Smith KL Jr (1985) Swimming rates of scavenging deep-sea amphipods recorded with a free-vehicle video camera. Deep Sea Res A 32(9):1135–1142

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17(6):1245–1271

    Article  Google Scholar 

  • Lueck R (2001) Turbulence in the benthic boundary layer. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean. Sciences Academic Press, San Diego, pp 3057–3063

    Chapter  Google Scholar 

  • Mazzei L, Marini S, Craig J, Aguzzi J, Fanelli E, Priede IG (2014) Automated video imaging system for counting deep-sea bioluminescence organisms events. In: ICPR workshop in computer vision for analysis of underwater imagery (CVAUI). IEEE

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199

    Article  CAS  PubMed  Google Scholar 

  • Nicol J (1958) Observations on luminescence in pelagic animals. J Mar Biol Assoc UK 37(03):705–752

    Google Scholar 

  • Nilsson DE, Warrant E, Johnsen S (2014) Computational visual ecology in the pelagic realm. Philos Trans R Soc Lond B Biol Sci 369(1636):20130038

    Article  PubMed  PubMed Central  Google Scholar 

  • Piontkovski SA, Tokarev YN, Bitukov EP, Williams R, Kiefer DÝ (1997) The bioluminescent field of the Atlantic Ocean. Mar Ecol Prog Ser 156:33–41

    Article  Google Scholar 

  • Priede IG, Smith KL Jr, Armstrong JD (1990) Foraging behaviour of abyssal grenadier fish: inferences from acoustic tagging and tracking in the North Pacific Ocean. Deep Sea Res A 37(1):81–101

    Article  Google Scholar 

  • Priede I, Bagley P, Way S, Herring P, Partridge J (2006) Bioluminescence in the deep sea: free-fall lander observations in the Atlantic Ocean off Cape Verde. Deep Sea Res I 3(7):1272–1283

    Article  Google Scholar 

  • Priede IG, Jamieson A, Heger A, Craig J, Zuur AF (2008) The potential influence of bioluminescence from marine animals on a deep-sea underwater neutrino telescope array in the Mediterranean Sea. Deep Sea Res I 55(11):1474–1483

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Roe HSJ (1988) Midwater biomass profiles over the Madeira abyssal plain and the contribution of copepods. Hydrobiologia 167(1):169–181

    Article  Google Scholar 

  • Roe HSJ, Domanski PA, Fasham MJ (1986) Great meteor east: an interim report on biological sampling and general relationship to physical oceanography. Institute of Oceanographic Sciences, report 225, 60 pp

  • Salon S, Crise A, Van Loon A (2008) Dynamics of the bottom boundary layer. Contourites. Dev Sedimentol 60:83–98

    Article  Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20(2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Swift E, Biggley WH, Napora TA (1977) The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (tunicata), Euphausia tenera (crustacea) and Gonostoma sp. (pisces). J Mar Biol Assoc UK 57(03):817–823

    Article  Google Scholar 

  • Vacquié-Garcia J, Royer F, Dragon AC, Viviant M, Bailleul F, Guinet C (2012) Foraging in the darkness of the southern ocean: influence of bioluminescence on a deep diving predator. PLoS One 7(8):e43565

    Article  PubMed  PubMed Central  Google Scholar 

  • van Haren H, de Jong M, Kooijman P (2015) Yearlong moored bioluminescence and current data at KM3NeT neutrino telescope sites in the deep Ionian Sea. Astropart Phys 67:1–7

    Article  Google Scholar 

  • Wagner H, Fröhlich E, Negishi K, Collin S (1998) The eyes of deep-sea fish II: functional morphology of the retina. Prog Retin Eye Res 17(4):637–685

    Article  CAS  PubMed  Google Scholar 

  • Warrant E (2000) The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Philos Trans R Soc Lond B Biol Sci 355(1401):1155–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79(3):671–712

    Article  PubMed  Google Scholar 

  • Webster M, Roos C, Roberts A, Okada A, Ohashi Y, O’Connor D, Mitiguy R, Matsuno S, March R, Learned J (1991) Mechanical stimulation of bioluminescence in the deep pacific ocean. Deep Sea Res A 38(2):201–217

    Article  Google Scholar 

  • Weikert H, Koppelmann R (1993) Vertical structural patterns of deep-living zooplankton in the NE Atlantic, the Levantine Sea and the Red Sea: a comparison. Oceanol Acta 16(2):163–177

    Google Scholar 

  • Weikert H, Koppelmann R (1996) Mid-water zooplankton profiles from the temperate ocean and partially landlocked seas. A re-evaluation of interoceanic differences. Oceanol Acta 19(6):657–664

    Google Scholar 

  • White SN, Chave AD, Reynolds GT (2002) Investigations of ambient light emission at deep-sea hydrothermal vents. J Geophys Res Solid Earth (1978–2012) 107(B1):EPM-1

    Google Scholar 

  • Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708

    Article  CAS  PubMed  Google Scholar 

  • Widder E, Bernstein S, Bracher D, Case J, Reisenbichler K, Torres J, Robison B (1989) Bioluminescence in the Monterey submarine canyon: image analysis of video recordings from a midwater submersible. Mar Biol 100(4):541–551

    Article  Google Scholar 

  • Wishner KF (1980a) The biomass of the deep-sea benthopelagic plankton. Deep Sea Res A 27(3–4):205–216

    Google Scholar 

  • Wishner KF (1980b) Aspects of the community ecology of deep-sea, benthopelagic plankton, with special attention to gymnopleid copepods. Mar Biol 60(2–3):179–187

    Article  Google Scholar 

  • Wren GG, May D (1997) Detection of submerged vessels using remote sensing techniques. Aust Def Force J 127:9–15

Download references

Acknowledgments

J.C. was funded by UK NERC studentship (NE/F012020/1). J.A. was funded by Ramon y Cajal program (MICINN). We also thank G.P. Gasparini (leader RV Urania cruise), H. Kontoyiannis (leader RV Aegaeo cruises), Dr. F. Sardá (leader RV Sarmiento de Gamboa cruise) and colleagues for facilitating on board work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Craig.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by M. Peck.

Reviewed by: K. Wishner and R. Koppelmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, J., Priede, I.G., Aguzzi, J. et al. Abundant bioluminescent sources of low-light intensity in the deep Mediterranean Sea and North Atlantic Ocean. Mar Biol 162, 1637–1649 (2015). https://doi.org/10.1007/s00227-015-2700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2700-2

Keywords

Navigation