Skip to main content

Advertisement

Log in

Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Arctic marine food webs are centered on polar cod (Boreogadus saida), a small, largely pelagic gadid, which movement and migration remain unclear, especially for the early life stages. The present study examined the otolith chemistry of juvenile polar cod from six oceanographic regions of the Arctic Ocean in order to document patterns of spatial segregation, dispersion and migration during the species early life. The freshwater winter refuge hypothesis, suggesting that polar cod larvae start to hatch in winter in freshwater-influenced regions but only later in the season in purely marine regions, was also tested. Five elemental ratios (Li/Ca, Mg/Ca, Mn/Ca, Sr/Ca and Ba/Ca) were analyzed by laser ablation inductively coupled plasma mass spectrometry in three otolith zones representing the egg, larval and juvenile stages. The concentration of each of the five elements at the edge of the otoliths, corresponding to incorporation shortly before capture, was significantly correlated with surface salinity and temperature at capture site and date. Otolith chemistry differed between juveniles from freshwater-influenced regions (Laptev Sea, Hudson Bay Amundsen Gulf) and those from purely marine regions (Lancaster Sound, Baffin Bay, Frobisher Bay), in agreement with dissolved concentrations of at least some of the target elements in the Arctic Ocean. Discriminant function analyses including all five elements provided valuable information on the species population structure and dispersion of early stages. The correspondence between otolith Mn/Ca, Ba/Ca and vertical profiles of dissolved Mn and Ba in the water column may reflect the ontogenetic vertical migration of juvenile polar cod in late-summer and fall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashford JR, Jones CM, Hofmann EE, Everson I, Moreno CA, Duhamel G, Williams R (2008) Otolith chemistry indicates population structuring by the Antarctic Circumpolar Current. Can J Fish Aquat Sci 65:135–146

    Article  CAS  Google Scholar 

  • Baranenkova AS, Ponomarenko VP, Khokhlina NS (1966) The distribution, size and growth of the larvae and fry of Boreogadus saida (Lep.) in the Barents Sea. Fish Mar Serv Transl Ser 4025:498–518

    Google Scholar 

  • Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64:1705–1714

    Article  CAS  Google Scholar 

  • Benoit D, Simard Y, Fortier L (2008) Hydroacoustic detection of large winter aggregations of Arctic cod (Boreogadus saida) at depth in ice-covered Franklin Bay (Beaufort Sea). J Geophys Res (C Oceans) 113:C06S90. doi:10.1029/2007JC004276

    Article  Google Scholar 

  • Benoit D, Simard Y, Gagné J, Geoffroy M, Fortier L (2010) From polar night to midnight sun: photoperiod, seal predation, and the diel vertical migrations of polar cod (Boreogadus saida) under landfast ice in the Arctic Ocean. Polar Biol 33:1505–1520. doi:10.1007/s00300-010-0840-x

    Article  Google Scholar 

  • Bouchard C, Mollard S, Suzuki K, Robert D, Fortier L Contrasting the early life histories of sympatric Arctic gadids Boreogadus saida and Arctogadus glacialis in the Canadian Beaufort Sea. Polar Biol. doi: 10.1007/s00300-014-1617-4 (in press)

  • Bouchard C, Fortier L (2008) Effects of polynyas on the hatching season, early growth and survival of polar cod Boreogadus saida in the Laptev Sea. Mar Ecol Prog Ser 355:247–256. doi:10.3354/meps07335

    Article  Google Scholar 

  • Bouchard C, Fortier L (2011) Circum-arctic comparison of the hatching season of polar cod Boreogadus saida: a test of the freshwater winter refuge hypothesis. Prog Oceanogr 90:105–116. doi:10.1016/j.pocean.2011.02.008

    Article  Google Scholar 

  • Bradstreet MSW, Finley KJ, Sekerak AD, Griffiths WD, Evans CR, Fabijan MF, Stallard HE (1986) Aspects of the biology of Arctic cod Boreogadus saida and its importance in Arctic marine food chains. Can Tech Rep Fish Aquat Sci 1491:193

    Google Scholar 

  • Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779–786

    Article  CAS  Google Scholar 

  • Brunner E, Domhof S, Langer F (2002) Nonparametric analysis of longitudinal data in factorial experiments. Wiley, New York

    Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Campana SE (2001) Accuracy, precision, and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242. doi:10.1006/jfbi.2001.1668

    Article  Google Scholar 

  • Clarke LM, Walther BD, Munch SB, Thorrold SR, Conover DO (2009) Chemical signatures in the otoliths of a coastal marine fish, Menidia menidia, from the northeastern United States: spatial and temporal differences. Mar Ecol Prog Ser 384:261–271

    Article  CAS  Google Scholar 

  • Craig PC, Griffiths WB, Haldorson L, McElderry H (1982) Ecological studies of Arctic cod (Boreogadus saida) in Beaufort Sea coastal water. Can J Fish Aquat Sci 39:395–406

    Article  Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre A, Quiñones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618. doi:10.1006/jmsc.2000.0712

    Article  Google Scholar 

  • Déry SJ, Stieglitz M, McKenna EC, Wood EF (2005) Characteristics and trends of river discharge into Hudson, James, and Ungava Bays, 1964–2000. J Climate 18:2540–2557

    Article  Google Scholar 

  • DiMaria R, Miller J, Hurst T (2010) Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalus. Environ Biol Fish 89:453–462. doi:10.1007/s10641-010-9665-2

    Article  Google Scholar 

  • Drolet R, Fortier L, Ponton D, Gilbert M (1991) Production of fish larvae and their prey in subarctic southeastern Hudson Bay. Mar Ecol Prog Ser 77:105–118. doi:10.3354/meps077105

    Article  Google Scholar 

  • Elsdon TS, Gillanders BM (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can J Fish Aquat Sci 59:1796

    Article  CAS  Google Scholar 

  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations, and inferences. Oceanogr Mar Biol Ann Rev 46:297–330

    Google Scholar 

  • Fevolden SE, Christiansen JS (1997) Allozymic and scnDNA homogeneity in Polar cod (Boreogadus saida) (Gadiformes: Gadidae). Cybium 21:411–414

    Google Scholar 

  • Fevolden SE, Martinez I, Christiansen JS (1999) RAPD and scnDNA analyses of polar cod, Boreogadus saida (Pisces, Gadidae), in the North Atlantic. Sarsia 84:99–103

    Google Scholar 

  • Fortier L, Gilbert M, Ponton D, Ingram RG, Robineau B, Legendre L (1996) Impact of freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson Bay, Canada). III. Feeding success of marine fish larvae. J Mar Syst 7:251–265. doi:10.1016/0924-7963(95)00005-4

    Article  Google Scholar 

  • Fortier L, Sirois P, Michaud J, Barber D (2006) Survival of Arctic cod larvae (Boreogadus saida) in relation to sea ice and temperature in the Northeast Water Polynya (Greenland Sea). Can J Fish Aquat Sci 63:1608–1616. doi:10.1139/F06-064

    Article  Google Scholar 

  • Geoffroy M, Robert D, Darnis G, Fortier L (2011) The aggregation of polar cod (Boreogadus saida) in the deep Atlantic layer of ice-covered Amundsen Gulf (Beaufort Sea) in winter. Polar Biol 34:1959–1971. doi:10.1007/s00300-011-1019-9

    Article  Google Scholar 

  • Gilbert M, Fortier L, Ponton D, Drolet R (1992) Feeding ecology of marine fish larvae across the Great Whale River plume in seasonally ice-covered southeastern Hudson Bay. Mar Ecol Prog Ser 84:19–30

    Article  Google Scholar 

  • Gillanders BM, Munro AR (2012) Hypersaline waters pose new challenges for reconstructing environmental histories of fish based on otolith chemistry. Limnol Oceanogr 57:1136–1148

    Article  CAS  Google Scholar 

  • Gordeev VV (2006) Fluvial sediment flux to the Arctic Ocean. Geomorphology 80:94–104

    Article  Google Scholar 

  • Guay CK, Falkner KK (1997) Barium as a tracer of Arctic halocline and river waters. Deep-Sea Res Part II Top Stud Oceanogr 44:1543–1569. doi:10.1016/s0967-0645(97)00066-0

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World Ocean Atlas 2013, volume 1: temperature. In: Levitus S, Mishonov A (eds.), NOAA Atlas NESDIS 73, p 40

  • Macdonald JI, Farley JH, Clear NP, Williams AJ, Carter TI, Davies CR, Nicol SJ (2013) Insights into mixing and movement of South Pacific albacore Thunnus alalunga derived from trace elements in otoliths. Fish Res 148:56–63. doi:10.1016/j.fishres.2013.08.004

    Article  Google Scholar 

  • Martin GB, Thorrold SR (2005) Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar Ecol Prog Ser 293:223–232. doi:10.3354/meps293223

    Article  CAS  Google Scholar 

  • Martin GB, Thorrold SR, Jones CM (2004) Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Can J Fish Aquat Sci 61:34–42

    Article  CAS  Google Scholar 

  • McCulloch M, Cappo M, Aumend J, Müller W (2005) Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Mar Freshw Res 56:637–644. doi:10.1071/MF04184

    Article  CAS  Google Scholar 

  • Michaud J, Fortier L, Rowe P, Ramseier R (1996) Feeding success and survivorship of Arctic cod larvae, Boreogadus saida, in the Northeast Water Polynya (Greenland Sea). Fish Oceanogr 5:120–135. doi:10.1111/j.1365-2419.1996.tb00111.x

    Article  Google Scholar 

  • Middag R, de Baar HJW, Laan P, Klunder MB (2011) Fluvial and hydrothermal input of manganese into the Arctic Ocean. Geochim Cosmochim Acta 75:2393–2408. doi:10.1016/j.gca.2011.02.011

    Article  CAS  Google Scholar 

  • Ponomarenko VP (2000) Eggs, larvae, and juveniles of polar cod Boreogadus saida in the Barents, Kara, and White Seas. J Ichthyol 40:165–173

    Google Scholar 

  • Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis GL, Sheehy MS, Standish JD, Ben-Tzvi O, Warner RR (2005) Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Mar Ecol Prog Ser 297:273–281. doi:10.3354/meps297273

    Article  CAS  Google Scholar 

  • Secor DH, Rooker JR (2000) Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fish Res 46:359–371

    Article  Google Scholar 

  • Shannon LJ, Cury PM, Jarre A (2000) Modelling effects of fishing in the Southern Benguela ecosystem. ICES J Mar Sci 57:720–722. doi:10.1006/jmsc.2000.0716

    Article  Google Scholar 

  • Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901. doi:10.1016/s0016-7037(98)00112-4

    Article  CAS  Google Scholar 

  • Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368

    Article  CAS  Google Scholar 

  • Smith ADM et al (2011) Impacts of fishing low–trophic level species on marine ecosystems. Science 333:1147–1150. doi:10.1126/science.1209395

    Article  CAS  Google Scholar 

  • Standish JD, Sheehy M, Warner RR (2008) Use of otolith natal elemental signatures as natural tags to evaluate connectivity among open-coast fish populations. Mar Ecol Prog Ser 356:259–268. doi:10.3354/meps07244

    Article  Google Scholar 

  • Sturgeon RE, Willie SN, Yang L, Greenberg R, Spatz RO, Chen Z, Scriver C, Clancy V, Lam JW, Thorrold S (2005) Certification of a fish otolith reference material in support of quality assurance for trace element analysis. J Anal At Spectrom 20:1067–1071

    Article  CAS  Google Scholar 

  • Thanassekos S, Fortier L (2012) An Individual Based Model of Arctic cod (Boreogadus saida) early life in Arctic polynyas: I. Simulated growth in relation to hatch date in the Northeast Water (Greenland Sea) and the North Water (Baffin Bay). J Mar Syst 93:25–38. doi:10.1016/j.jmarsys.2011.08.003

    Article  Google Scholar 

  • Thomas H, Shadwick E, Dehairs F, Lansard B, Mucci A, Navez J, Gratton Y, Prowe F, Chierici M, Fransson A, Papakyriakou TN, Sternberg E, Miller LA, Tremblay J-É, Monnin C (2011) Barium and carbon fluxes in the Canadian Arctic Archipelago. J Geophys Res Oceans 116:C00G08. doi:10.1029/2011jc007120

    Article  Google Scholar 

  • Tynan CT, DeMaster DP (1997) Observations and predictions of Arctic climatic change potential effects on marine mammals. Arctic 50:308–322

    Article  Google Scholar 

  • Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic Canada. Arctic 45:343–357

    Article  Google Scholar 

  • Zweng MM, Reagan JR, Antonov JI, Locarnini RA, Mishonov AV, Boyer TP, Garcia HE, Baranova OK, Johnson DR, Seidov D, Biddle MM (2013) World Ocean Atlas 2013, volume 2: salinity. In: Levitus S, Mishonov A (eds.), NOAA Atlas NESDIS 74, p 39

Download references

Acknowledgments

We thank the numerous people who help with the sampling including officers and crews of the CCGS Amundsen and the icebreaker Kapitan Dranitsyn. Special thanks to H. Cloutier and S. Birdwhistell for support with otolith preparation and analyses and to G. Daigle for statistical advices. Support from the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) and the Northern Scientific Training Program (Department of Indian and Northern Affairs Canada) to CB is acknowledged. This is a contribution to Québec-Océan (Université Laval), the Canadian Network of Centres of Excellence ArcticNet, the Nansen and Amundsen Basins Observational System (NABOS), and the Canada Research Chair on the response of marine arctic ecosystems to climate warming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Bouchard.

Additional information

Communicated by D. Righton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchard, C., Thorrold, S.R. & Fortier, L. Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry. Mar Biol 162, 855–868 (2015). https://doi.org/10.1007/s00227-015-2629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2629-5

Keywords

Navigation