Skip to main content

Advertisement

Log in

Afro-Eurasia and the Americas present barriers to gene flow for the cosmopolitan neustonic nudibranch Glaucus atlanticus

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Pelagic species have been traditionally thought to occupy vast, genetically interconnected, geographic ranges in an essentially homogeneous environment. Although this view has been challenged recently for some mesopelagic planktonic taxa, the population structure of hyponeustonic (surface-drifting) species remains unknown. Here, we test the hypothesis of panmixis in Glaucus atlanticus, a cosmopolitan neustonic nudibranch, by assessing the genetic differentiation of multiple representatives from a global neustonic sampling effort. Specimens were collected from all subtropical oceanic gyre systems (North Atlantic, South Atlantic, North Pacific, South Pacific, and Indian Ocean). We sequenced a fragment of the mitochondrial cytochrome oxidase I gene for 98 individuals and performed population structure, differentiation (analysis of molecular variance, spatial analysis of molecular variance, F ST, Jost’s D), and molecular clock analyses. Our results indicate that G. atlanticus is not globally panmictic, but that populations appear to be panmictic within ocean basins. We detected several topologically ectopic haplotypes in the Atlantic Ocean, but the molecular clock analysis indicates that these have diverged from closely related Indo-Pacific haplotypes over 1.2 MYA, coinciding with cooling in waters around in the southern tip of Africa and resulting oceanographic changes. These data and the fact that G. atlanticus is not known from polar latitudes suggest that gene flow between ocean basins is hindered by physical barriers (supercontinents) and water temperatures in the Arctic and Southern Oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarado Bremer JR, Viñas J, Mejuto J, Ely B, Pla C (2005) Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol Phylogenet Evol 36:169–187

    Article  CAS  Google Scholar 

  • Andersen NM, Cheng L, Damgaard J, Sperling FAH (2000) Mitochondrial DNA sequence variation and phylogeography of oceanic insects (Hemiptera: Gerridae: Halobates spp.). Mar Biol 136:421–430

    Article  CAS  Google Scholar 

  • Biastoch A, Böning CW, Schwarzkopf FU, Lutjeharms JRE (2009) Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462:495–498

    Article  CAS  Google Scholar 

  • Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343

    CAS  Google Scholar 

  • Casteleyn G, Leliaert F, Backeljau T, Debeer A-E, Kotaki Y, Rhodes L, Lundholm N, Sabbe K, Vyverman W (2010) Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl Acad Sci USA 107:12952–12957

    Article  Google Scholar 

  • Churchill CK, Alejandrino A, Valdés A, Foighil DÓ (2013) Parallel changes in genital morphology delineate cryptic diversification of planktonic nudibranchs. Proc R Soc B 280:20131224

    Article  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  Google Scholar 

  • Coates AG, Obando JA (1996) The geologic evolution of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 21–56

    Google Scholar 

  • Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowsett HJ, Bybell LM, Jung P, Obando JA (1992) Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828

    Article  Google Scholar 

  • Cowen RK, Gawarkiewicz G, Pineda J, Thorrold SR, Werner FE (2007) Population connectivity in marine systems: an overview. Oceanography 20:14–21

    Article  Google Scholar 

  • Damgaard J, Andersen NM, Cheng L, Sperling FAH (2000) Phylogeny of sea skaters, Halobates Eschscholtz (Hemiptera, Gerridae), based on mtDNA sequence and morphology. Zool J Linn Soc 130:511–526

    Article  Google Scholar 

  • Darling KF, Wade CM (2008) The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol 67:216–238

    Article  Google Scholar 

  • Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Brown AJ (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:43–47

    Article  CAS  Google Scholar 

  • Dawson MN, Hamner WM (2008) A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems. J R Soc Interface 5:135–150

    Article  Google Scholar 

  • Dawson MN, Barber PH, González-Guzmán LI, Toonen RJ, Dugan JE, Grosberg RK (2011) Phylogeography of Emerita analoga (Crustacea, Decapoda, Hippidae), an eastern Pacific Ocean sand crab with long-lived pelagic larvae. J Biogeogr 38:1600–1612

    Article  Google Scholar 

  • Day JH (1963) The complexity of the biotic environment. In: Harding JP, Tebble N (eds) Speciation in the sea. Systematics Associates, London, pp 31–49

    Google Scholar 

  • de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J (1999) Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA 96:2864–2868

    Article  Google Scholar 

  • Diekmann B, Kuhn G (2002) Sedimentary record of the mid-Pleistocene climate transition in the southeastern South Atlantic (ODP Site 1090). Palaeogeogr Palaeoclimatol Palaeoecol 182:241–258

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Ely B, Viñas J, Alvarado Bremer JR, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 22:19

    Article  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Foote AD, Morin PA, Durban JW, Willerslev E, Orlando L, Gilbert MTP (2011) Out of the Pacific and back again: insights into the matrilineal history of Pacific killer whale ecotypes. PLoS ONE 6:e24980

    Article  CAS  Google Scholar 

  • Frey MA, Vermeij GJ (2008) Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): implications for regional diversity patterns in the marine tropics. Mol Phylogenet Evol 48:1067–1086

    Article  CAS  Google Scholar 

  • Gaylord B, Gaines SD (2000) Temperature or transport? Range limits in marine species mediated solely by flow. Am Nat 155:769–789

    Article  Google Scholar 

  • Goetze E (2003) Cryptic speciation on the high seas: Global phylogenetics of the copepod family Eucalanidae. Proc R Soc B 270:2321–2331

    Article  Google Scholar 

  • Goetze E (2005) Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution 59:2378–2398

    CAS  Google Scholar 

  • Gubili C, Bilgin R, Kalkan E, Karhan SÜ, Jones CS, Sims DW, Kabasakal H, Martin AP, Noble LR (2011) Antipodean white sharks on a Mediterranean walkabout? Historical dispersal leads to genetic discontinuity and an endangered anomalous population. Proc R Soc B 278:1679–1686

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  Google Scholar 

  • Lalli CM, Gilmer RW (1989) Pelagic snails. The biology of holoplanktonic gastropod mollusks. Stanford University Press, Stanford, CA

    Google Scholar 

  • Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021

    Article  CAS  Google Scholar 

  • Marshall HG, Burchardt L (2005) Neuston: its definition with a historical review regarding its concept and community structure. Arch Hydrobiol 164:429–448

    Article  Google Scholar 

  • Mayr E (1954) Geographic speciation in tropical echinoids. Evolution 8:1–18

    Article  Google Scholar 

  • McGowan JA (1971) Oceanic biogeography of the Pacific. In: Funnell BM, Riedel WR (eds) The micropaleontology of the oceans. Cambridge University Press, Cambridge, pp 3–74

    Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Res 11:5–18

    Article  Google Scholar 

  • Mills S, Lunt DH, Gómez A (2007) Global isolation by distance despite strong regional phylogeography in a small metazoan. BMC Evol Biol 7:225

    Article  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Peeters FJC, Acheson R, Brummer G-JA, de Ruijter WPM, Schneider RR, Ganssen GM, Ufkes E, Kroon D (2004) Vigorous exchange between the Indian and Atlantic Oceans at the end of the past five glacial periods. Nature 430:661–665

    Article  CAS  Google Scholar 

  • Pontin DR, Cruickshank RH (2012) Molecular phylogenetics of the genus Physalia (Cnidaria: Siphonophora) in New Zealand coastal waters reveals cryptic diversity. Hydrobiologia 686:91–105

    Article  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  Google Scholar 

  • Rambaut A, Drummond AJ (2009) Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer. Accessed 1 December 2009

  • Sanderson MJ (2003) r8 s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302

    Article  CAS  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  Google Scholar 

  • Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448

    Article  CAS  Google Scholar 

  • Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23:7–9

    Article  CAS  Google Scholar 

  • Shields CC (2009) Nudibranchs of the Ross Sea, Antarctica: Phylogeny, diversity, and divergence. Masters Dissertation, Clemson University

  • Taniguchi M, Kanehisa T, Sawabe T, Christen R, Ikeda T (2004) Molecular phylogeny of Neocalanus copepods in the subarctic Pacific Ocean with notes on the non-geographic genetic variations for Neocalanus cristatus. J Plankton Res 26:1249–1255

    Article  CAS  Google Scholar 

  • Vermeij GJ (2012) The tropical history and future of the Mediterranean biota and the West African enigma. J Biogeogr 39:31–41

    Article  Google Scholar 

  • Walker ND (1989) Sea surface temperature-rainfall relationships and associated ocean-atmosphere coupling mechanisms in the southern Africa region. Ph.D. Dissertation, University of Cape Town

Download references

Acknowledgments

We thank the following for their assistance: USA: J. Lyczkowski-Shultz (Southeast Area Monitoring and Assessment Program) and R. Humphreys (Pacific Islands Fisheries Science Center) of the National Oceanographic and Atmospheric Administration, the students and crew of SEA Semester (www.sea.edu), T. Lee (University of Michigan Museum of Zoology); Australia: P. Colman (Australian Museum), L. Beckley (Murdoch University), S. Slack-Smith and C. Whisson (Western Australian Museum); South Africa: R. van der Elst (Oceanographic Research Institute), D. Herbert (Natal Museum), Mark Gibbons (University of the Western Cape), W. Florence and E. Hoenson (Iziko Museums of Cape Town). D. Riek photographed live glaucinins. Funding for this research comes from NSF award OCE 0850625 and National Geographic Society award 8601-09 to D.ÓF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Valdés.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix S1 Bayesian maximum credibility tree (DOCX 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churchill, C.K.C., Valdés, Á. & Ó Foighil, D. Afro-Eurasia and the Americas present barriers to gene flow for the cosmopolitan neustonic nudibranch Glaucus atlanticus . Mar Biol 161, 899–910 (2014). https://doi.org/10.1007/s00227-014-2389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2389-7

Keywords

Navigation