Skip to main content

Advertisement

Log in

Determination of the swimming trajectory and speed of chain-forming dinoflagellate Cochlodinium polykrikoides with digital holographic particle tracking velocimetry

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The marine dinoflagellate Cochlodinium polykrikoides is a harmful and highly motile algal species. To distinguish between the motility characteristics of solitary and chain-forming cells, the swimming trajectories and speeds of solitary cells and 2- to 8-cell chains of C. polykrikoides were measured using a digital holographic particle tracking velocimetry (PTV) technique. C. polykrikoides cells exhibited helical swimming trajectories similar to other dinoflagellate species. The swimming speed increased as the number of cells in the chain increased, from an average of 391 μm s−1 (solitary cells) to 856 μm s−1 (8-cell chain). The helix radius R and pitch P also increased as the number of cells in the chain increased. R increased from 9.24 μm (solitary cell) to 20.3 μm (8-cell chain) and P increased from 107 μm (solitary cell) to 164 μm (8-cell chain). The free thrust-generating motion of the transverse flagella and large drag reduction in the chain-forming cells seemed to increase the swimming speed compared to solitary cells. The measured swimming speeds agreed with those from field observations. The superior motility of chain-forming C. polykrikoides cells may be an important factor for its bloom, in addition to the factors reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baek SJ, Lee SJ (1996) A new two-frame particle tracking algorithm using match probability. Exp Fluids 22:23–32

    Article  CAS  Google Scholar 

  • Band-Schmidt CJ, Lilly EL, Anderson DM (2003) Identification of Alexandrium affine and A. margalefi (Dinophyceae) using DNA sequencing and LSU rDNAbased RFLP–PCR assays. Phycologia 42:261–268

    Article  Google Scholar 

  • Bauerfeind E, Elbrächter M, Steiner R, Throndsen J (1986) Application of laser doppler spectroscopy (LDS) in determining swimming velocities of motile phytoplankton. Mar Biol 93:323–327

    Article  Google Scholar 

  • Bolli L, Llaveria G, Garces C, Guadayol O, van Lenning K, Peters F, Berdalet E (2007) Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence. Biogeosciences 4:559–567

    Article  CAS  Google Scholar 

  • Choi YS, Lee SJ (2009) Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy. Appl Opt 48:2983–2990

    Article  Google Scholar 

  • Crenshaw H (1989) Kinematics of helical motion of microorganisms capable of motion with four degrees of freedom. Biophys J 56:1029–1035

    Article  CAS  Google Scholar 

  • Crenshaw H, Ciampaglio C, McHenry M (2000) Analysis of the three-dimensional trajectories of organisms: estimates of velocity, curvature and torsion from positional information. J Exp Biol 203:961–982

    CAS  Google Scholar 

  • Fenchel T (2001) How Dinoflagellates swim. Protist 152:329–338

    Article  CAS  Google Scholar 

  • Fraga S, Gallager SM, Anderson DM (1989) Chain-forming dinoflagellates: an adaptation to red tides. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, Amsterdam, pp 281–284

  • Gaines G, Taylor FJR (1985) Form and function of the dinoflagellate transverse flagellum. J Protozool 32:290–296

    Google Scholar 

  • Goldstein SF (1992) Flagellar beat patterns. In: Melkonian M (ed) Algal cell motility. Chapman and Hall, New York, pp 99–153

    Google Scholar 

  • Hand WG, Schmidt JA (1975) Phototactic orientation by the marine dinoflagellate Gyrodinium dorsum Kofoid. II. Flagellar activity and overall response mechanism. J Protozool 22(4):494–498

    Google Scholar 

  • Hoppenrath M, Leander BS (2007) Morphology and phylogeny of the pseudocolonial dinoflagellates polykrikos lebourae and polykrikos herdmanae n. sp. Protist 158:209–227

    Article  CAS  Google Scholar 

  • Jiang H, Paffenhöfer G (2008) Hydrodynamic signal perception by the copepod Oithona plumifera. Mar Ecol Prog Ser 373:37–52

    Article  Google Scholar 

  • Kamykowski D, Reed RE, Kirkpatrick GJ (1992) Comparison of sinking velocity, swimming velocity, rotation and path characteristics among six marine dinoflagellate species. Mar Biol 113:319–328

    Google Scholar 

  • Karleskint G Jr, Turner R, Small JW Jr (2006) Introduction to marine biology, 2nd ed. Thomson Brooks/Cole, Canada, pp 126–127

  • Karp-Boss L, Boss E, Jumars PA (2000) Motion of dinoflagellates in simple shear flow. Limnol Oceanogr 45:1594–1602

    Article  Google Scholar 

  • Kim HG et al (1997) Recent red tides in Korean coastal waters. Bull national fisheries research and development agency, pp 237–239

  • Kim CS, Lee SG, Lee CK, Kim HG, Jung J (1999) Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plank Res 21:2105–2115

    Article  CAS  Google Scholar 

  • Kim C, Kim H, Kim C, Oh H (2007) Life cycle of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters. Harmful Algae 6:104–111

    Article  Google Scholar 

  • Kudela RM, Ryan JP, Blakely MD, Lane JQ, Peterson TD (2008) Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7:278–292

    Article  CAS  Google Scholar 

  • Lee YS (2006) Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the costal seawaters around Yeosu and Tongyeong, Korea. Mar Pollut Bull 52:1249–1259

    Article  CAS  Google Scholar 

  • Levandowsky M, Kaneta PJ (1987) Behavior in dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, 360–397

  • Lewis NI, Xu W, Jericho SK, Kreuzer HJ, Jericho MH, Cembella AD (2006) Swimming speed of three species Alexandrium (dinophyceae) as determined by digital in-line holographiy. Phycologia 45:61–71

    Article  Google Scholar 

  • Matsuoka K, Iwataki M, Kawami H (2008) Morphology and taxonomy of chain-forming species of the genus Cochlodinium (Dinophyceae). Harmful Algae 7:261–270

    Article  Google Scholar 

  • Miyasaka I, Nanba K, Furuya K, Nimura Y (1998) High-speed video observation of swimming behavior and flagellar motility of Prorocentrum minimum (Dinophyceae). Protoplasma 204:38–46

    Article  Google Scholar 

  • Miyasaka I, Nanba K, Furuya K, Nimura Y, Azuma A (2004) Functional roles of the transverse and longitudinal flagella in the swimming motility of Prorocentrum minimum (Dinophyceae). J Exp Biol 207:3055–3066

    Article  Google Scholar 

  • Park JG, Jeong MK, Lee JA, Cho KJ, Kwon OS (2001) Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae island, Korea. Phycologia 40:292–297

    Article  Google Scholar 

  • Sheng J, Malkiel E, Katz J, Adolf J, Belas R, Place AR (2007) Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proc Natl Acad Sci USA 104(44):17512–17517

    Article  CAS  Google Scholar 

  • Smayda TJ (2002) Turbulence, watermass stratification, and harmful algal blooms: an alternative view and frontal zones as “Pelagic Seed Banks”. Harmful Algae 1:95–112

    Article  Google Scholar 

  • Smayda TJ (2010) Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behavior. Prog Oceanogr 85:71–91

    Article  Google Scholar 

  • Sullivan E, Swift E, Donaghay PL, Rines JEB (2003) Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. Harmful Algae 2:183–199

    Article  Google Scholar 

  • Tomas C, Smayda TJ (2008) Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7:308–317

    Article  CAS  Google Scholar 

  • Vladimirov VA, Wu MSC, Pedley TJ, Denissenko PV, Zakhidova SG (2004) Measurement of cell velocity distributions in populations of motile algae. J Exp Biol 207:1203–1216

    Article  CAS  Google Scholar 

  • Vogel S (1994) Life in moving fluids; the physical biology of flow, 2nd ed. Princeton University, 337

  • Yu L, Kim MK (2005) Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt Lett 3:2092–2094

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Creative Research Initiatives (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of the Ministry of Education, Science and Technology/National Research Foundation of Korea. This research was also supported by the World Class University program through the MEST/NRF of Korea (R31-2008-000-10105-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Lee.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, M.H., Seo, K.W., Choi, Y.S. et al. Determination of the swimming trajectory and speed of chain-forming dinoflagellate Cochlodinium polykrikoides with digital holographic particle tracking velocimetry. Mar Biol 158, 561–570 (2011). https://doi.org/10.1007/s00227-010-1581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1581-7

Keywords

Navigation