Skip to main content
Log in

How do dietary diatoms cause the sex reversal of the shrimp Hippolyte inermis Leach (Crustacea, Decapoda)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Hippolyte inermis Leach 1915 is a protandric shrimp largely distributed in Posidonia oceanica meadows and other Mediterranean seagrasses. Previous studies demonstrated several physiological peculiarities, such as absence of female gonadic buds in adult males (the new female gonad is produced starting from few undifferentiated cells), the consequent absence of an ovotestis, 2 yearly periods of reproduction with different population structures (a spring outburst producing both males and primary females, and a fall reproduction producing mainly males), and a process of sex reversal influenced by the diatom food ingested. We performed several laboratory analyses to compare the effects of various species of benthic diatoms, in order to test the effect of different diatoms and provide information on the mechanism of action of the ingested compounds. In addition, we performed molecular tests (TUNEL) and TEM observations, to check the hypothesis that the effect of benthic diatoms may be mediated by a process of apoptosis acting on the male gonad. The results obtained allowed for a ranking of a series of benthic diatoms according to their effects on sex reversal, and a confirmation of the striking effect of Cocconeis sp. diatoms, which are able to trigger the appearance of primary females. We also demonstrated the presence of apoptosis both in the male gonad and in the androgenic glands of postlarvae. The effect is species specific, strictly localized to the male gonad and androgenic gland, and limited to a very short period of time, from the 5th to the 12th day of postlarval development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdu U, Davis C, Khalaila I, Sagi A, (2002) The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen Comp Endocrinol 127:263–272

    Article  CAS  PubMed  Google Scholar 

  • Adiyodi G, Adiyodi G (1970) Endocrine control of reproduction in decapod crustacea. Biol Rev 45:121–165

    Article  CAS  PubMed  Google Scholar 

  • Austin CM, Meewan M (1999) A preliminary study of primary sex ratios in the freshwater crayfish, Cherax destructor Clark. Aquaculture 174:43–50

    Article  Google Scholar 

  • Bauer RT (2000) Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. J Crust Biol 20(2):116–128 Sp. Iss. SI

    Article  Google Scholar 

  • Bedini R, Canali MG, Baldi C (1997) Mimetismo criptico nei crostacei della prateria a Posidonia oceanica (L.) Delile. Biol Mar Medit 4(1):353–355

    Google Scholar 

  • Bongiorni L, Pietra F (1996) Marine Natural Products for industrial application. Chem Ind 2:54–58

    Google Scholar 

  • Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R, D’Incalci M (2003) Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells Molt-4. Leukemia 17:52–59

    Article  CAS  PubMed  Google Scholar 

  • Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Medit 7(2):167–190

    Google Scholar 

  • Calado R, Figueiredo J, Rosa R, Nunes ML, Narciso L (2005) Effects of temperature, density, and diet on development, survival, settlement synchronism, and fatty acid profile of the ornamental shrimp Lysmata seticaudata. Aquaculture 245(1–4):221–237

    Article  CAS  Google Scholar 

  • Charniaux-Cotton H (1954) Decouverte chez un Crustace Amphipode (Orchestia gammarella) d’une glande endocrine responsible de la differenciation des caracteres sexuels primaires et secondaires males. Comptes Rendus Acad Sci Paris 239:780–782

    CAS  Google Scholar 

  • Charniaux-Cotton H (1960) Sex determination. In: Waterman TH (ed) Physiology of crustacea, 1. Academic Press, New York, pp 411–447

    Chapter  Google Scholar 

  • Charniaux-Cotton H, Payen G (1988) Crustacean reproduction. In: H Laufer, Downer RGH (eds) Endocrinology of selected invertebrate types. Alan R. Liss, New York, pp 279–303

  • Cobos V, Diaz V, Garcia-Raso JE, Manjòn-Cabeza ME (2005) Insights on the female reproductive system in Hippolyte inermis (Decapoda, Caridea): is this species really hermaphroditic? Invertebr Biol 124(4):310–320

    Article  Google Scholar 

  • d’Udekem d’Acoz C (1996) The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zool Verhand 303:1–133

    Google Scholar 

  • De Stefano M, Marino D, Mazzella L (2000) Marine taxa of Cocconeis on leaves of Posidonia oceanica, including a new species and two new varieties. Eur J Phycol 35(3):225–242

    Article  Google Scholar 

  • Dirsch VM, Kirschke SO, Estermeier M, Steffan B, Vollmar AM (2004) Apoptosis signaling triggered by the marine alkaloid ascididemin is routed via caspase-2 and JNK to mitochondria. Oncogene 23:1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Erba E, Bergamaschi D, Bassano L, Damia G, Ronzoni S, Faircloth GT, D’Incalci M (2001) Ecteinascidin-743 (ET-/l), a natural marine compound, with a unique mechanism of action. Eur J Cancer 37:97–105

    Article  CAS  PubMed  Google Scholar 

  • Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Frankfurt OS, Krishan A (2001) Identification of apoptotic cells by formamide-induced DNA denaturation in condensed chromatin. J Histochem Cytochem 49:369–378

    Article  CAS  PubMed  Google Scholar 

  • Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Depth and seasonal distribution of some groups of vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analyses. P.S.Z.N.I.: Mar Ecol 13:17–39

  • Gherardi F, Calloni C (1993) Protandrous hermaphroditism in the tropical shrimp Athanas indicus (Decapoda: Caridea), a symbiont of sea urchins. J Crust Biol 13(4):675–689

    Article  Google Scholar 

  • Ginsburger-Vogel T, Charniaux-Cotton H (1982) Sex determination. In: Abele LG (ed) The biology of Crustacea. Academic, Orlando, pp 257–281

  • Guillen Nieto JE (1990) Guia illustrada de los crustaceos decapodos del litoral alicantino. 316 pp. - Instituto del Cultura “Juan Gil-Albert” Publ., Alicante

  • Hannun YA (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89:1845–1853

    CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  • Ianora A, Poulet SA, Miralto A (1995) A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar Biol 121:533–539

    Article  Google Scholar 

  • Jimeno JM (2002) A clinical armamentarium of marine-derived anti-cancer compounds. Anticancer Drugs 13(1):15–19

    Article  Google Scholar 

  • Katakura Y (1989) Endocrine and genetic control of sex differentiation in the malacostracan Crustacea. Inv Rep Dev 16:177–182

    Article  Google Scholar 

  • Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49

    Article  CAS  PubMed  Google Scholar 

  • Khalaila I, Weil S, Sagi A (1999) Endocrine balance between male and female components of the reproductive system in intersex Cherax quadricarinatus (Decapoda: Parastacidae). J Exp Zool 283:286–294

    Article  Google Scholar 

  • Khalaila I, Manor R, Weil S, Granot Y, Keller R, Sagi A (2002) The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen Comp Endocrinol 127(2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Le Roux A (1963) Contribution à l’étude du développement larvaire d’Hippolyte inermis Leach (Crustacée Décapode Macroure). Comptes Rendus Séanc Acad Sci Paris 256:3499–3501

    Google Scholar 

  • Martin G, Sorokine O, Moniatte M, Bulet P, Hetru C, Van Dorsselaer A (1999) The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. Eur J Biochem 262:727–736

    Article  CAS  PubMed  Google Scholar 

  • Mazzella L, Buia MC (1989) Variazioni a lungo termine in alcuni parametri strutturali di una prateria a Posidonia oceanica. Nova Thalassia 10(1):533–542

    Google Scholar 

  • Miralto A, Ianora A, Poulet SA (1995) Food type induces different reproductive responses in the copepod Centropages typicus. J Plankt Res 17:1521–1534

    Article  Google Scholar 

  • Miralto A, Ianora A, Poulet SA, Romano G, Laabir M (1996) Is fecundity modified by crowding in the copepod Centropages typicus? J Plankt Res 18:1033–1040

    Article  Google Scholar 

  • Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Buttino I, Mazzarella G, Laabir M, Cabrini M, Giacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402(6758):173–176

    Article  CAS  Google Scholar 

  • Nagamine C, Knight AW, Maggenti A, Paxman G (1980) Effects of androgenic gland ablation on male primary and secondary sexual characteristics in the Malaysian prawn Macrobrachium rosenbergii (de Man) with first evidence of induced feminization in a non-hermaphroditic decapod. Gen Comp Endocrinol 41:423–441

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman DM, Cotter TG (2001) Molecular signals in anti-apoptotic survival pathways. Leukemia 15:21–34

    Article  PubMed  Google Scholar 

  • Ohira T, Hasegawa Y, Tominaga S, Okuno A, Nagasawa H (2003) Molecular cloning and expression analysis of cDNAs encoding androgenic gland hormone precursors from two Porcellionidae species, Porcellio scaber and P. dilatatus. Zool Sci 20(1):75–81

    Article  CAS  Google Scholar 

  • Payen GG (1973) Etude descriptive des principales étapes de la morphogenèse sexuelle chez un crustacé décapode à développement condensé, l’Ecrevisse Pontastacus leptodactylus leptodactylus (Eschscholtz, 1823). Ann Embryol Morphog 6:179–206

    Google Scholar 

  • Payen GG (1983) Endocrine regulation of male genital development in malacostraca. Am Zool 23(4):951–951

    Google Scholar 

  • Poulet SA, Ianora A, Miralto A, Meijer L (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Prog Ser 111:79–86

    Article  Google Scholar 

  • Raff M (1998) Cell suicide for beginners. Nature 396:119–122

    Article  CAS  PubMed  Google Scholar 

  • Regnault M (1969) Etude experimentale de la nutrition d’Hippolyte inermis Leach (Decapoda Natantia) au course de son developpement larvaire, au laboratoire. Internat Rev ges Hydrobiol 54:749–764

    Article  Google Scholar 

  • Reverberi G (1950) La situazione sessuale di Hippolyte viridis e le condizioni che la reggono. Bollettino Zoologico Italiano 4–6:91–94

    Article  Google Scholar 

  • Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206(19):3487–3494

    Article  PubMed  Google Scholar 

  • Sagi A (1988) The androgenic gland in crustacea-with emphasis on the cultured freshwater prawn Macrobrachium rosenbergii—A review. Israeli J Aquacult Bamidgeh 40(1):9–16

    Google Scholar 

  • Sagi A, Khalaila I (2001) The crustacean androgen: a hormone in an isopod and androgenic activity in decapods. Am Zool 41:477–484

    CAS  Google Scholar 

  • Sagi A, Milstein A, Eran Y, Joseph D, Khalaila I, Abdu U, Harpaz S, Karplus I (1997a) Culture of the Australian redclaw crayfish (Cherax quadricarinatus) in Israel, second growout season of overwintered populations. Israeli J Aquacult Bamidgeh 49(4):222–229

    Google Scholar 

  • Sagi A, Snir E, Khalaila I (1997b) Sexual differentiation in decapod crustaceans: role of the androgenic gland. Invert Reprod Devel 31:55–61

    Article  Google Scholar 

  • Sagi A, Manor R, Segall C, Davis C, Khalaila I (2002) On intersexuality in the crayfish Cherax quadricarinatus: an inducible sexual plasticity model. Invert Reprod Devel 41:27–33

    Article  Google Scholar 

  • Schwartsmann G, Brondani da Rocha A, Berlinck RG, Jimeno J (2001) Marine organisms as a source of new anticancer agents. Lancet oncol 2:221–225

    Article  CAS  PubMed  Google Scholar 

  • Schwartsmann G, Da Rocha AB, Mattei J, Lopes R (2003) Marine-derived anticancer agents in clinical trials. Expert Opin Investig Drugs 12:1367–1383

    Article  CAS  PubMed  Google Scholar 

  • Taketomi Y., Nishikawa S, Koga S (1996) Testis and androgenic gland during development of external sexual characteristics of the crayfish Procambarus clarkii. J Crust Biol 16:24–34

    Article  Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    CAS  PubMed  Google Scholar 

  • Veillet A, Dax J, Vouax AM (1963) Inversion sexuelle et parasitisme par Bophyrina virbii (Walz) chez la crevette Hippolyte inermis (Leach). Comptes Rendus Séanc Acad Sci Paris 256:790–791

    Google Scholar 

  • Zariquiei Alvarez R (1968) Crustaceos Decapodos ibericos. Investigation Pesquera 32:1–510

    Google Scholar 

  • Zupo V (1994) Strategies of sexual inversion in Hippolyte inermis Leach (Crustacea Decapoda) from a Mediterranean seagrass meadow. J Exp Mar Biol Ecol 178:131–145

    Article  Google Scholar 

  • Zupo V (2000) Effect of microalgal food on sex reversal of Hippolyte inermis (Crustacea Decapoda). Mar Ecol Prog Ser 201:251–259

    Article  Google Scholar 

  • Zupo V (2001) Influence of diet on sex differentiation of Hippolyte inermis Leach (Decapoda: Natantia) in the field. Hydrobiologia 449:131–140

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially conducted within the degree thesis of P. Messina. The confocal microscopy observations were conducted by Dr. Isabella Buttino. We thank Dr. A. Sagi and Dr. M. Williams for the critical revision of the English text and Dr. M. De Stefano for taxonomical advices on the selected diatoms. We are indebted to Dr. E. Aflalo for the fundamental contribution in the histological researches on H. inermis. Mr G. Iamunno performed the TEM preparations. Some specimens used for TUNEL analyses were cultivated and processed within the Pharmapox project, funded by the European Commission (EU 4800) and coordinated by V. Zupo. The text was improved thanks to the suggestions of two anonymous reviewers. The correctness of English language was kindly enhanced by Mrs. R. Messina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Zupo.

Additional information

Communicated by R. Cattaneo-Vietti, Genova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zupo, V., Messina, P. How do dietary diatoms cause the sex reversal of the shrimp Hippolyte inermis Leach (Crustacea, Decapoda). Mar Biol 151, 907–917 (2007). https://doi.org/10.1007/s00227-006-0524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0524-9

Keywords

Navigation