Skip to main content
Log in

Optimal Decremental Connectivity in Planar Graphs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We show an algorithm for dynamic maintenance of connectivity information in an undirected planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the form “Are vertices u and v connected with a path?" in constant time. The queries can be intermixed with any sequence of edge deletions, and the algorithm handles all updates in a total of O(n) time. This results improves over a previously known O(n log n) time algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Throughout the paper we use n and m to denote, respectively, the number of vertices and the number of edges in the graph.

  2. Since the graph has constant degree, we may assure that both searches are synchronized in terms of number of vertices visited.

References

  1. Alstrup, S., Secher, J.P., Spork, M.: Optimal on-line decremental connectivity in trees. Inf. Process. Lett. 64(4), 161–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Eppstein, D., Galil, Z., Italiano, G.F.: Improved sparsification. Information and Computer Science. University of California, Irvine (1993)

    Google Scholar 

  3. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification - a technique for speeding up dynamic graph algorithms. J. ACM 44, 669–696 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based sparsification: I. Planarity testing and minimum spanning trees. J. Comput. Syst. Sci. 52(1), 3–27 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook, J., Yung, M.: Maintenance of a minimum spanning forest in a dynamic plane graph. J. Algorithms 13(1), 33–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giammarresi, D., Italiano, G.F.: Decremental 2- and 3-connectivity on planar graphs. Algorithmica 16(3), 263–287 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gustedt, J.: Efficient union-find for planar graphs and other sparse graph classes. Theor. Comput. Sci. 203(1), 123–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22(3), 351–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages 1131–1142. SIAM (2013)

  14. Kejlberg-Rasmussen, C., Kopelowitz, T., Pettie, S., Thorup, M.: Deterministic worst case dynamic connectivity: Simpler and faster. CoRR (2015). arXiv:1507.05944

  15. Klein, P.N., Mozes, S., Sommer, C.: Structured recursive separator decompositions for planar graphs in linear time. In: Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 505–514. ACM (2013)

  16. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. SIAM J. Comput. 35(4), 932–963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. La Poutré, J.A.: Lower bounds for the union-find and the sp;it-find problem on pointer machines. J. Comput. Syst. Sci. 52(1), 87–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tarjan, R.E.: A class of algorithms which require nonlinear time to maintain disjoint sets. J. Comput. Syst. Sci. 18(2), 110–127 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thorup, M.: Decremental dynamic connectivity. J. Algorithms 33(2), 229–243 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 343–350, ACM, p 2000

  22. van Walderveen, F., Zeh, N., Arge, L.: Multiway simple cycle separators I/O-efficient algorithms for planar graphs. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 901–918. SIAM, p 2013

  23. Wulff-Nilsen, C.: Faster deterministic fully-dynamic graph connectivity. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757–1769. SIAM, p 2013

Download references

Acknowledgements

This work is partly supported by the EU FET project MULTIPLEX no. 317532 and the Google Focused Award on “Algorithms for Large-scale Data Analysis”. Piotr Sankowski is supported by Polish National Science Centre grant UMO-2014/13/B/ST6/01811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Łącki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łącki, J., Sankowski, P. Optimal Decremental Connectivity in Planar Graphs. Theory Comput Syst 61, 1037–1053 (2017). https://doi.org/10.1007/s00224-016-9709-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-016-9709-x

Keywords

Navigation