Skip to main content
Log in

Constant Thresholds Can Make Target Set Selection Tractable

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Target Set Selection, which is a prominent NP-hard problem occurring in social network analysis and distributed computing, is notoriously hard both in terms of achieving useful polynomial-time approximation as well as fixed-parameter algorithms. Given an undirected graph, the task is to select a minimum number of vertices into a “target set” such that all other vertices will become active in the course of a dynamic process (which may go through several activation rounds). A vertex, equipped with a threshold value t, becomes active once at least t of its neighbors are active; initially, only the target set vertices are active. We contribute further insights into the existence of islands of tractability for Target Set Selection by spotting new parameterizations characterizing some sparse graphs as well as some “cliquish” graphs and developing corresponding fixed-parameter tractability and (parameterized) hardness results. In particular, we demonstrate that upper-bounding the thresholds by a constant may significantly alleviate the search for efficiently solvable, but still meaningful special cases of Target Set Selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A graph with bandwidth k has a linear arrangement of its vertices v 1,…,v n such that the length |ij| of each edge {v i ,v j } is at most k.

  2. An undirected graph is a cluster graph if and only if it contains no induced P 3, that is, an induced path of three vertices. Using this characterization, the factor 3-approximation simply deletes all vertices occurring in an induced P 3.

References

  1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411(44–46), 4017–4022 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams, S.S., Troxell, D.S., Zinnen, S.L.: Dynamic monopolies and feedback vertex sets in hexagonal grids. Comput. Math. Appl. 62(11), 4049–4057 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adams, S.S., Booth, P., Troxell, D.S., Zinnen, S.L.: Modeling the spread of fault in majority-based network systems: dynamic monopolies in triangular grids. Discrete Appl. Math. 160(10–11), 1624–1633 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions. Comb. Probab. Comput. 19(5–6), 643–692 (2010)

    Article  MATH  Google Scholar 

  5. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of influence in social networks. In: Proc. 19th COCOON. LNCS, vol. 7936, pp. 543–554. Springer, Berlin (2013)

    Google Scholar 

  6. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Proc. 4th IWPEC. LNCS, vol. 5917, pp. 17–37. Springer, Berlin (2009)

    Google Scholar 

  8. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion of graphs. Theor. Comput. Sci. 412(29), 3693–3700 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theor. Comput. Sci. 410(27–29), 2714–2724 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the target set selection problem. J. Comb. Optim. 25(4), 702–715 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2010)

    Book  Google Scholar 

  13. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Proc. 37th MFCS. LNCS, vol. 7464, pp. 348–359. Springer, Berlin (2012)

    Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  15. Dreyer, P.A. Jr., Roberts, F.S.: Irreversible k-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  17. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  19. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  20. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Proc. 1st IWPEC. LNCS, vol. 3162, pp. 162–173. Springer, Berlin (2004)

    Google Scholar 

  21. Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets of graphs. Comb. Probab. Comput. 8(6), 547–553 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Chapter  Google Scholar 

  24. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proc. 9th ACM KDD, pp. 137–146. ACM, New York (2003)

    Google Scholar 

  25. Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-tuple domination in graphs. Inf. Process. Lett. 89(2), 75–83 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In: Proc. 37th MFCS. LNCS, vol. 7464, pp. 19–30. Springer, Berlin (2012)

    Google Scholar 

  27. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proc. 5th SODA, pp. 536–545. ACM/SIAM, New York/Philadelphia (1994)

    Google Scholar 

  29. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Mining 3(2), 233–256 (2013)

    Article  Google Scholar 

  30. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)

    Book  MATH  Google Scholar 

  31. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282(2), 231–257 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination. In: Proc. 2nd COCOA. LNCS, vol. 5165, pp. 116–126. Springer, Berlin (2008)

    Google Scholar 

  33. Reddy, T., Krishna, D., Rangan, C.: Variants of spreading messages. In: Proc. 4th WALCOM. LNCS, vol. 5942, pp. 240–251. Springer, Berlin (2010)

    Google Scholar 

  34. Reichman, D.: New bounds for contagious sets. Discrete Math. 312(10), 1812–1814 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nichterlein.

Additional information

An extended abstract appeared in the Proceedings of the 1st Mediterranean Conference on Algorithms (MedAlg), Ein-Gedi, Israel, December 2012, Volume 7659 of Lecture Notes in Computer Science, pages 120–133, Springer.

Main work of M. Chopin done during a three-month visit to TU Berlin supported by DAAD.

M. Weller was supported by the DFG, project DARE (NI 369/11).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopin, M., Nichterlein, A., Niedermeier, R. et al. Constant Thresholds Can Make Target Set Selection Tractable. Theory Comput Syst 55, 61–83 (2014). https://doi.org/10.1007/s00224-013-9499-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-013-9499-3

Keywords

Navigation