Skip to main content

Advertisement

Log in

Exposure Duration Is a Determinant of the Effect of Sinusoidal Electromagnetic Fields on Peak Bone Mass of Young Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We proposed a three-step strategy to obtain the optimal therapeutic parameters, which is composed of large-scale screening at cellular level, verification in animal experiments, and confirmation by a clinical trial. The objective of the current study was to test the feasibility of our strategy. Newborn rat calvarial osteoblasts were treated by 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) with 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 h/days, respectively. The osteogenic differentiation and maturation of the osteoblast were assayed and compared to obtain the optimal duration. One-month-old growing rats were then treated by the same SEMFs with 0.5, 1.5, and 2.5 h/days, respectively, and the peak bone mass was analyzed after 2 months. It was found that the optimal exposure duration to promote the osteogenic differentiation and maturation of osteoblasts was 1.5 h/days, judging by the increasing degrees of ALP activity, calcified nodules formed, the gene and protein expression levels of Runx-2, BMP-2, and Col-I, as well as the expression levels of signaling proteins of the BMP-2/Smad1/5/8 pathway. The highest increase of peak bone mass after 2 months was also obtained by 1.5 h/days, judging by the results of X-ray dual-energy absorptiometry, mechanical property analysis, micro-CT scanning, and serum bone turnover marker examinations. The above results indicated that exposure duration is a determinant for the therapeutic effect of EMFs, and the optimal therapeutic effects only can be obtained by the optimal exposure duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Griffin XL, Warner F, Costa M (2008) The role of electromagnetic stimulation in the management of established non-union of long bone fractures: what is the evidence? Injury 39:419–429

    Article  PubMed  CAS  Google Scholar 

  2. Martinez-Rondanelli A, Martinez JP, Moncada ME, Manzi E, Pinedo CR, Cadavid H (2014) Electromagnetic stimulation as coadjuvant in the healing of diaphyseal femoral fractures: a randomized controlled trial. Colomb Med 45:67–71

    PubMed  PubMed Central  Google Scholar 

  3. Osti L, Del Buono A, Maffulli N (2015) Application of pulsed electromagnetic fields after microfractures to the knee: a mid-term study. Int Orthop 39:1289–1294

    Article  PubMed  Google Scholar 

  4. Thomas AW, Graham K, Prato FS, McKay J, Forster PM, Moulin D, Chari S (2007) A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain. Pain Res Manag 12:249–258

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wuschech H, von Hehn U, Mikus E, Funk RH (2015) Effects of PEMF on patients with osteoarthritis: results of a prospective, placebo-controlled, double-blind study. Bioelectromagnetics 36:576–585

    Article  PubMed  Google Scholar 

  6. Wang R, Wu H, Yang Y, Song M (2016) Effects of electromagnetic fields on osteoporosis: a systematic literature review. Electromagn Biol Med 35:384–390

    Article  PubMed  Google Scholar 

  7. Saliev T, Mustapova Z, Kulsharova G, Bulanin D, Mikhalovsky S (2014) Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell Prolif 47:485–493

    Article  PubMed  CAS  Google Scholar 

  8. Viganò M, Sansone V, d’Agostino MC, Romeo P, Perucca Orfei C, de Girolamo L (2016) Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J Orthop Surg Res 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arjmand M, Ardeshirylajimi A, Maghsoudi H, Azadian E (2017) Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field. J Cell Physiol. https://doi.org/10.1002/jcp.25962

    Article  PubMed  Google Scholar 

  10. Gupta A, Taly AB, Srivastava A, Kumar S, Thyloth M (2009) Efficacy of pulsed electromagnetic field therapy in healing of pressureulcers: a randomized control trial. Neurol India 57:622–626

    Article  PubMed  Google Scholar 

  11. Ryang We S, Koog YH, Jeong KI, Wi H (2013) Effects of pulsed electromagnetic fields on knee osteoarthritis: a systematic review. Rheumatology 52:815–824

    Article  PubMed  Google Scholar 

  12. Hannemann PF, van Wezenbeek MR, Kolkman KA, Twiss EL, Berghmans CH, Dirven PA et al (2014) CT scan-evaluated outcome of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: a randomised, multicentre, double-blind, placebo-controlled trial. Bone Joint J 96-B:1070–1076

    Article  PubMed  CAS  Google Scholar 

  13. Maziarz A, Kocan B, Bester M, Budzik S, Cholewa M, Ochiya T et al (2016) How electromagnetic fields can influence adult stem cells:positive and negative impacts. Stem Cell Res Ther 7:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z et al (2011) Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49:753–761

    Article  PubMed  CAS  Google Scholar 

  15. Luo F, Hou T, Zhang Z, Xie Z, Wu X, Xu J (2012) Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics 35:e526–e531

    Article  PubMed  Google Scholar 

  16. Hong JM, Kang KS, Yi HG, Kim SY, Cho DW (2014) Electromagnetically controllable osteoclast activity. Bone 62:99–107

    Article  PubMed  CAS  Google Scholar 

  17. Ross CL, Siriwardane M, Almeida-Porada G, Porada CD, Brink P, Christ GJ et al (2015) The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res 15:96–108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bassett CA, Mitchell SN, Gaston SR (1982) Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 247:623–628

    Article  PubMed  CAS  Google Scholar 

  19. Simmons JW (1985) Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop Relat Res 193:127–132

    Google Scholar 

  20. Veronesi F, Torricelli P, Giavaresi G, Sartori M, Cavani F, Setti S et al (2014) In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J Orthop Res 32:677–685

    Article  PubMed  CAS  Google Scholar 

  21. Bagnato GL, Miceli G, Marino N, Sciortino D, Bagnato GF (2016) Pulsed electromagnetic fields in knee osteoarthritis: a double blind, placebo-controlled, randomized clinical trial. Rheumatology 55:755–762

    Article  PubMed  Google Scholar 

  22. Yan JL, Zhou J, Ma HP, Ma XN, Gao YH, Shi WG et al (2015) Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 404:132–140

    Article  PubMed  CAS  Google Scholar 

  23. Xie YF, Shi WG, Zhou J, Gao YH, Li SF, Fang QQ et al (2016) Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 93:22–32

    Article  PubMed  CAS  Google Scholar 

  24. Ma HP, Ming LG, Ge BF, Zhai YK, Song P, Xian CJ et al (2011) Icarrin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J Cell Biochem 112:916–923

    Article  PubMed  CAS  Google Scholar 

  25. Ma XN, Zhou J, Ge BF, Zhen P, Ma HP, Shi WG et al (2013) Icariin induces osteoblast differentiation and mineralization without dexamethasone in vitro. Planta Med 79:1501–1508

    Article  PubMed  CAS  Google Scholar 

  26. Janas A, Folwarczna J (2017) Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis. Naunyn Schmiedebergs Arch Pharmacol 390:175–185

    Article  PubMed  CAS  Google Scholar 

  27. Jeremy B, Adams EL, Beth B, Oleksra M, Czymmek KJ, Anja N (2012) Initiation of BMP2 signaling in domains on the plasma membrane. J Cell Physiol 227:2880–2888

    Article  CAS  Google Scholar 

  28. Mardon J, Mathey J, Kati-Coulibaly S, Puel C, Davicco MJ, Lebecque P (2008) Influence of lifelong soy isoflavones consumption on bone mass in the rat. Exp Biol Med (Maywood) 233:229–237

    Article  CAS  Google Scholar 

  29. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K (1993) Bone density at various sites for prediction of hip fractures. The study of osteoporotic fractures research group. Lancet 34:72–75

    Article  Google Scholar 

  30. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R (2009) The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Públ De Mexico 51:(Suppl 1):S5

    Google Scholar 

  31. Gautam AK, Bhargavan B, Tyagi AM, Srivastava K, Yadav DK, Kumar M et al (2011) Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats. J Nutr Biochem 22:318–327

    Article  PubMed  CAS  Google Scholar 

  32. Golden NH, Abrams SA (2014) Optimizing bone health in children and adolescents. Pediatrics 134:1229–1243

    Article  Google Scholar 

  33. Viljakainen HT (2016) Factors influencing bone mass accrual: focus on nutritional aspects. Proc Nutr Soc 75:415–419

    Article  PubMed  CAS  Google Scholar 

  34. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R (2016) The national osteoporosis foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Funk RH, Monsees T, Ozkucur N (2009) Electromagnetic effects-from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  PubMed  CAS  Google Scholar 

  36. Zhou J, Ma XN, Gao YH, Yan JL, Shi WG, Xian CJ et al (2014) Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics 35:30–40

    Article  PubMed  CAS  Google Scholar 

  37. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J (2003) Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res 18:2060–2068

    Article  PubMed  CAS  Google Scholar 

  38. Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera EM et al (2007) Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131:980–993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM (2015) TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 3:15005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhao QR, Lu JM, Yao JJ, Zhang ZY, Ling C, Mei YA (2015) Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields. Sci Rep 5:11768

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gurfinkel YI, At’kov OY, Vasin AL, Breus TK, Sasonko ML, Pishchalnikov RY (2016) Effect of zero magnetic field on cardiovascular system and microcirculation. Life Sci Space Res 8:1–7

    Article  Google Scholar 

  42. Sun J, Kwan RL, Zheng Y, Cheing GL (2016) Effects of pulsed electromagnetic fields on peripheral blood circulation in people with diabetes: a randomized controlled trial. Bioelectromagnetics 37:290–297

    Article  PubMed  Google Scholar 

  43. Guerriero F, Ricevuti G (2016) Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regen Res 11:1888–1895

    Article  PubMed  PubMed Central  Google Scholar 

  44. Markov MS (2005) “Biological windows”: a tribute to W. Ross Adey. Environmentalist 25:67–74

    Article  Google Scholar 

  45. Markov MS (2007) Magnetic field therapy: a review. Electromagn Biol Med 26:1–23

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (No. 81270963, 81471090, 81770879 to KMC, and 21762027 to ZDY) and the International Science & Technology Cooperation Program of China (No.2015DFR30940). CJX is supported by NHMRC Australia Senior Research Fellowship (No. 1042105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. D. Yang or K. M. Chen.

Ethics declarations

Conflict of interest

Bao-Ying Zhu, Zhong-Duo Yang, Xin-Ru Chen, Jian Zhou, Yu-Hai Gao, Cory J Xian, and Ke-Ming Chen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All animal experiments were carried out in accordance with the Guide for Use and Care of Laboratory Animals and were approved by the Lanzhou General Hospital of CPLA’s Animal Care Committee. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B.Y., Yang, Z.D., Chen, X.R. et al. Exposure Duration Is a Determinant of the Effect of Sinusoidal Electromagnetic Fields on Peak Bone Mass of Young Rats. Calcif Tissue Int 103, 95–106 (2018). https://doi.org/10.1007/s00223-018-0396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0396-2

Keywords

Navigation