Skip to main content

Advertisement

Log in

Implications of the Interaction Between miRNAs and Autophagy in Osteoporosis

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Imbalances between bone formation and resorption are the primary cause of osteoporosis. However, currently, a detailed molecular mechanism of osteoporosis is not available. Autophagy is the conserved process characterized by degrading and recycling aggregated proteins, intracellular pathogens, and damaged organelles. MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes, including autophagy, through the posttranscriptional regulation of gene expression. Conversely, autophagy plays a role in the regulation of miRNA homeostasis. Recent advances have revealed that both autophagy and miRNAs are involved in the maintenance of bone homoeostasis, whereas the role of the interaction of miRNAs with autophagy in osteoporosis remains unclear. In this paper, we review previous reports on autophagy, miRNAs, and their interaction in osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  CAS  PubMed  Google Scholar 

  2. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  3. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  CAS  PubMed  Google Scholar 

  4. van Staa TP, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29:517–522

    Article  PubMed  Google Scholar 

  5. Pasco JA, Lane SE, Brennan-Olsen SL, Holloway KL, Timney EN, Bucki-Smith G, Morse AG, Dobbins AG, Williams LJ, Hyde NK, Kotowicz MA (2015) The epidemiology of incident fracture from cradle to senescence. Calcif Tissue Int 97:568–576

    Article  CAS  PubMed  Google Scholar 

  6. Wolski H, Bogacz A, Bartkowiak-Wieczorek J, Greber A, Pieńkowski W, Drews K, Klejewski A, Seremak-Mrozikiewicz A (2015) Polymorphism of bone morphogenetic protein (BMP2) and osteoporosis etiology. Ginekol Pol 86:203–209

    Article  PubMed  Google Scholar 

  7. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levine B, Kroemer G (2009) Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ 16:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim KH, Lee MS (2014) Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 10:322–337

    Article  CAS  PubMed  Google Scholar 

  12. Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19:1–15

    Article  CAS  PubMed  Google Scholar 

  13. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  15. Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746

    Article  CAS  PubMed  Google Scholar 

  16. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  17. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  CAS  PubMed  Google Scholar 

  19. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  CAS  PubMed  Google Scholar 

  20. Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O (2012) Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14:1314–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, Lin YJ, Wu CT, Liu HS (2014) Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 59:505–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jing Z, Han W, Sui X, Xie J, Pan H (2015) Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 356:332–338

    Article  CAS  PubMed  Google Scholar 

  23. Jin S (2006) Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2:80–84

    Article  CAS  PubMed  Google Scholar 

  24. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  25. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  26. Daroszewska A, van’t Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, Rose K, Ralston SH (2011) A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum Mol Genet 20:2734–2744

    Article  CAS  PubMed  Google Scholar 

  27. Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C (2014) Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 10:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Romero DF, Buchinsky FJ, Rucinski B, Cvetkovic M, Bryer HP, Liang XG, Ma YF, Jee WS, Epstein S (1995) Rapamycin: a bone sparing immunosuppressant? J Bone Miner Res 10:760–768

    Article  CAS  PubMed  Google Scholar 

  29. Alvarez-Garcia O, Carbajo-Pérez E, Garcia E, Gil H, Molinos I, Rodriguez J, Ordoñez FA, Santos F (2007) Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol 22:954–961

    Article  PubMed  Google Scholar 

  30. Sanchez CP, He YZ (2009) Bone growth during rapamycin therapy in young rats. BMC Pediatr 9:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hussein O, Tiedemann K, Murshed M, Komarova SV (2012) Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett 314:176–184

    Article  CAS  PubMed  Google Scholar 

  32. Alvarez-García O, García-López E, Loredo V, Gil-Peña H, Rodríguez-Suárez J, Ordóñez FA, Carbajo-Pérez E, Santos F (2010) Rapamycin induces growth retardation by disrupting angiogenesis in the growth plate. Kidney Int 78:561–568

    Article  PubMed  CAS  Google Scholar 

  33. Holstein JH, Klein M, Garcia P, Histing T, Culemann U, Pizanis A, Laschke MW, Scheuer C, Meier C, Schorr H, Pohlemann T, Menger MD (2008) Rapamycin affects early fracture healing in mice. Br J Pharmacol 154:1055–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang B, Wang Y, Wang W, Chen J, Lai P, Liu Z, Yan B, Xu S, Zhang Z, Zeng C, Rong L, Liu B, Cai D, Jin D, Bai X (2015) MTORC1 prevents preosteoblast differentiation through the Notch signaling pathway. PLoS Genet 11:e1005426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Darcy A, Meltzer M, Miller J, Lee S, Chappell S, Ver Donck K, Montano M (2012) A novel library screen identifies immunosuppressors that promote osteoblast differentiation. Bone 50:1294–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ogawa T, Tokuda M, Tomizawa K, Matsui H, Itano T, Konishi R, Nagahata S, Hatase O (1998) Osteoblastic differentiation is enhanced by rapamycin in rat osteoblast-like osteosarcoma (ROS 17/2.8) cells. Biochem Biophys Res Commun 249:226–230

    Article  CAS  PubMed  Google Scholar 

  37. Suvannasankha A, Chirgwin JM (2014) Role of bone-anabolic agents in the treatment of breast cancer bone metastases. Breast Cancer Res 16:484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Isomoto S, Hattori K, Ohgushi H, Nakajima H, Tanaka Y, Takakura Y (2007) Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells. J Orthop Sci 12:83–88

    Article  CAS  PubMed  Google Scholar 

  39. Hirose K, Shiomi T, Hozumi S, Kikuchi Y (2014) Mechanistic target of rapamycin complex 1 signaling regulates cell proliferation, cell survival, and differentiation in regenerating zebrafish fins. BMC Dev Biol 14:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Singha UK, Jiang Y, Yu S, Luo M, Lu Y, Zhang J, Xiao G (2008) Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem 103:434–446

    Article  CAS  PubMed  Google Scholar 

  41. Yeh LC, Ma X, Ford JJ, Adamo ML, Lee JC (2013) Rapamycin inhibits BMP-7-induced osteogenic and lipogenic marker expressions in fetal rat calvarial cells. J Cell Biochem 114:1760–1771

    Article  CAS  PubMed  Google Scholar 

  42. Kim J, Jung Y, Sun H, Joseph J, Mishra A, Shiozawa Y, Wang J, Krebsbach PH, Taichman RS (2012) Erythropoietin mediated bone formation is regulated by mTOR signaling. J Cell Biochem 113:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li SF, Tang JJ, Chen J, Zhang P, Wang T, Chen TY, Yan B, Huang B, Wang L, Huang MJ, Zhang ZM, Jin DD (2015) Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des Dev Ther 9:5169–5183

    Google Scholar 

  44. Sun H, Kim JK, Mortensen R, Mutyaba LP, Hankenson KD, Krebsbach PH (2013) Osteoblast-targeted suppression of PPARgamma increases osteogenesis through activation of mTOR signaling. Stem Cells 31:2183–2192

    Article  CAS  PubMed  Google Scholar 

  45. Fan JB, Liu W, Zhu XH, Yuan K, Xu DW, Chen JJ, Cui ZM (2015) EGFR-AKT-mTOR activation mediates epiregulin-induced pleiotropic functions in cultured osteoblasts. Mol Cell Biochem 398:105–113

    Article  CAS  PubMed  Google Scholar 

  46. Lisse TS, Liu T, Irmler M, Beckers J, Chen H, Adams JS, Hewison M (2011) Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB J 25:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tchetina EV, Maslova KA, Krylov MY, Myakotkin VA (2015) Association of bone loss with the upregulation of survival-related genes and concomitant downregulation of Mammalian target of rapamycin and osteoblast differentiation-related genes in the peripheral blood of late postmenopausal osteoporotic women. J Osteoporos 2015:802694

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fang F, Sun S, Wang L, Guan JL, Giovannini M, Zhu Y, Liu F (2015) Neural crest-specific TSC1 deletion in mice leads to sclerotic craniofacial bone lesion. J Bone Miner Res 30:1195–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng Z, Jing D, Zhang X, Duan Y, Xue F (2015) Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism. Int J Mol Med 36:947–956

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Riddle RC, Leslie JM, Gross TS, Clemens TL (2011) Hypoxia-inducible factor-1alpha protein negatively regulates load-induced bone formation. J Biol Chem 286:44449–44456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Luo D, Ren H, Li T, Lian K, Lin D (2015) Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos Int. doi:10.1007/s00198-015-3325-5

    Google Scholar 

  52. van der Merwe SW, Conradie MM, Bond R, Olivier BJ, Fritz E, Nieuwoudt M, Delport R, Slavik T, Engelbrecht G, Kahn D, Shephard EG, Kotze MJ, de Villiers NP, Hough S (2006) Effect of rapamycin on hepatic osteodystrophy in rats with portasystemic shunting. World J Gastroenterol 12:4504–4510

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu N, Xu N, Wei LH, Chai GL (2013) Mammalian target of rapamycin inhibitor abrogates abnormal osteoclastogenesis in neurofibromatosis type 1. Chin Med J (Engl) 126:101–107

    Article  CAS  Google Scholar 

  54. Kloos B, Chakraborty S, Lindner SG, Noack K, Harre U, Schett G, Krämer OH, Kubatzky KF (2015) Pasteurella multocida toxin-induced osteoclastogenesis requires mTOR activation. Cell Commun Signal 13:40

    Article  PubMed  PubMed Central  Google Scholar 

  55. Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, Anderson J, Timm M, Ngo H, Lu G, Huston A, Ehrlich LA, Dimmock E, Lentzsch S, Hideshima T, Roodman GD, Anderson KC, Ghobrial IM (2006) Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res 12:6826–6835

    Article  CAS  PubMed  Google Scholar 

  56. Indo Y, Takeshita S, Ishii KA, Hoshii T, Aburatani H, Hirao A, Ikeda K (2013) Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res 28:2392–2399

    Article  CAS  PubMed  Google Scholar 

  57. Owen HC, Vanhees I, Gunst J, Van Cromphaut S, Van den Berghe G (2015) Critical illness-induced bone loss is related to deficient autophagy and histone hypomethylation. Intensive Care Med Exp 3:52

    Article  PubMed  Google Scholar 

  58. Smink JJ, Tunn PU, Leutz A (2012) Rapamycin inhibits osteoclast formation in giant cell tumor of bone through the C/EBPbeta-MafB axis. J Mol Med (Berl) 90:25–30

    Article  CAS  Google Scholar 

  59. Blaslov K, Katalinic L, Kes P, Spasovski G, Smalcelj R, Basic-Jukic N (2014) What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy? Int Urol Nephrol 46:1019–1024

    Article  CAS  PubMed  Google Scholar 

  60. Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G (2010) Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum 62:2294–2302

    Article  CAS  PubMed  Google Scholar 

  61. Sugatani T, Hruska KA (2005) Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors. J Biol Chem 280:3583–3589

    Article  CAS  PubMed  Google Scholar 

  62. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA (2003) M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 10:1165–1177

    Article  CAS  PubMed  Google Scholar 

  63. Hadji P, Coleman R, Gnant M (2013) Bone effects of mammalian target of rapamycin (mTOR) inhibition with everolimus. Crit Rev Oncol Hematol 87:101–111

    Article  PubMed  Google Scholar 

  64. Durán A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309

    Article  PubMed  Google Scholar 

  65. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Y, Li L, Moore BT, Peng XH, Fang X, Lappe JM, Recker RR, Xiao P (2012) MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One 7:e34641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang X, Guo B, Li Q et al (2013) MiR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100

    Article  PubMed  CAS  Google Scholar 

  68. Lei SF, Papasian CJ, Deng HW (2011) Polymorphisms in predicted miRNA binding sites and osteoporosis. J Bone Miner Res 26:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728

    Article  CAS  PubMed  Google Scholar 

  70. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH (2012) miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, Tang L, Ding Y, Jin Y (2013) Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res 28:559–573

    Article  CAS  PubMed  Google Scholar 

  72. Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556

    Article  CAS  PubMed  Google Scholar 

  73. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    Article  CAS  PubMed  Google Scholar 

  75. Qiu W, Kassem M (2014) MiR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation. Biochim Biophys Acta 1843:2114–2121

    Article  CAS  PubMed  Google Scholar 

  76. Chen Q, Liu W, Sinha KM, Yasuda H, de Crombrugghe B (2013) Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS One 8:e58104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kapinas K, Kessler CB, Delany AM (2009) MiR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 108:216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) MiR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang T, Xu Z (2010) MiR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402:186–189

    Article  CAS  PubMed  Google Scholar 

  81. Hu W, Ye Y, Zhang W, Wang J, Chen A, Guo F (2013) MiR1423p promotes osteoblast differentiation by modulating Wnt signaling. Mol Med Rep 7:689–693

    CAS  PubMed  Google Scholar 

  82. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26:1953–1963

    Article  CAS  PubMed  Google Scholar 

  83. Zhang WB, Zhong WJ, Wang L (2014) A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 58:59–66

    Article  CAS  PubMed  Google Scholar 

  84. Wang FS, Chuang PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL, Ko JY (2013) MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum 65:1530–1540

    Article  CAS  PubMed  Google Scholar 

  85. Shi C, Huang P, Kang H, Hu B, Qi J, Jiang M, Zhou H, Guo L, Deng L (2015) Glucocorticoid inhibits osteoblasts proliferation by microRNA-199a targeting WNT signaling. J Mol Endocrinol 54:325–337

    Article  CAS  PubMed  Google Scholar 

  86. Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BS, Gu HF, Hong JF, Cao L, Chen Y, Xia B, Bi Q, Wang YP (2014) Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 9:e114627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS (2009) MiR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 24:816–825

    Article  CAS  PubMed  Google Scholar 

  88. Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) MiR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583:2263–2268

    Article  CAS  PubMed  Google Scholar 

  89. Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie H, Zhu W, Dai RC, Wu XP, Liao EY, Luo XH (2013) MiR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res 28:1180–1190

    Article  CAS  PubMed  Google Scholar 

  90. Kim K, Kim JH, Lee J, Jin HM, Kook H, Kim KK, Lee SY, Kim N (2007) MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109:3253–3259

    Article  CAS  PubMed  Google Scholar 

  91. Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood 117:3648–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR, Xiao P (2014) MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One 9:e97098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Guo LJ, Liao L, Yang L, Li Y, Jiang TJ (2014) MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp Cell Res 321:142–152

    Article  CAS  PubMed  Google Scholar 

  94. Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) MiR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12:343–353

    Article  PubMed  PubMed Central  Google Scholar 

  95. Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, Sood AK, Mendell JT, Wan Y (2014) MiR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 512:431–435

    Article  CAS  PubMed  Google Scholar 

  96. Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY, Luo XH (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29:338–347

    Article  CAS  PubMed  Google Scholar 

  97. Kagiya T, Nakamura S (2013) Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation. J Periodontal Res 48:373–385

    Article  CAS  PubMed  Google Scholar 

  98. Rossi M, Pitari MR, Amodio N, Di Martino MT, Conforti F, Leone E, Botta C, Paolino FM, Del Giudice T, Iuliano E, Caraglia M, Ferrarini M, Giordano A, Tagliaferri P, Tassone P (2013) MiR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol 228:1506–1515

    Article  CAS  PubMed  Google Scholar 

  99. Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH (2013) MicroRNA-124 regulates osteoclast differentiation. Bone 56:383–389

    Article  CAS  PubMed  Google Scholar 

  100. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibbings D, Mostowy S, Voinnet O (2013) Autophagy selectively regulates miRNA homeostasis. Autophagy 9:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim KM, Lim SK (2014) Role of miRNAs in bone and their potential as therapeutic targets. Curr Opin Pharmacol 16:133–141

    Article  PubMed  CAS  Google Scholar 

  103. Hocking LJ, Whitehouse C, Helfrich MH (2012) Autophagy: a new player in skeletal maintenance? J Bone Miner Res 27:1439–1447

    Article  CAS  PubMed  Google Scholar 

  104. Zhang GY, Wang J, Jia YJ, Han R, Li P, Zhu DN (2015) MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy. Neural Regen Res 10:314–320

    Article  PubMed  PubMed Central  Google Scholar 

  105. You L, Gu W, Chen L, Pan L, Chen J, Peng Y (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li H, Li T, Fan J, Li T, Fan L, Wang S, Weng X, Han Q, Zhao RC (2015) MiR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ 22:1935–1945

    Article  CAS  PubMed  Google Scholar 

  107. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360

    Article  CAS  PubMed  Google Scholar 

  108. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055

    Article  CAS  PubMed  Google Scholar 

  109. Mukai M, Yoshimine Y, Akamine A, Maeda K (1993) Bone-like nodules formed in vitro by rat periodontal ligament cells. Cell Tissue Res 271:453–460

    Article  CAS  PubMed  Google Scholar 

  110. Cho MI, Matsuda N, Lin WL, Moshier A, Ramakrishnan PR (1992) In vitro formation of mineralized nodules by periodontal ligament cells from the rat. Calcif Tissue Int 50:459–467

    Article  CAS  PubMed  Google Scholar 

  111. Qi L, Zhang Y (2014) The microRNA 132 regulates fluid shear stress-induced differentiation in periodontal ligament cells through mTOR signaling pathway. Cell Physiol Biochem 33:433–445

    Article  CAS  PubMed  Google Scholar 

  112. Yang M, Pan Y, Zhou Y (2014) MiR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells. FEBS Lett 588:4761–4768

    Article  CAS  PubMed  Google Scholar 

  113. Yu S, Geng Q, Ma J, Sun F, Yu Y, Pan Q, Hong A (2013) Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation. Cell Death Dis 4:e868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun KT, Chen MY, Tu MG, Wang IK, Chang SS, Li CY (2015) MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone 73:145–153

    Article  CAS  PubMed  Google Scholar 

  115. Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D, Dai Y, Marucha PT, Zhou X (2013) MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS One 8:e64434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wei F, Liu Y, Guo Y, Xiang A, Wang G, Xue X, Lu Z (2013) miR-99b-targeted mTOR induction contributes to irradiation resistance in pancreatic cancer. Mol Cancer 12:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Franceschetti T, Dole NS, Kessler CB, Lee SK, Delany AM (2014) Pathway analysis of microRNA expression profile during murine osteoclastogenesis. PLoS One 9:e107262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. M’Baya-Moutoula E, Louvet L, Metzinger-Le Meuth V, Massy ZA, Metzinger L (2015) High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223. Biochim Biophys Acta 1852:2202–2212

    Article  PubMed  CAS  Google Scholar 

  119. Yao Y, Jia T, Pan Y, Gou H, Li Y, Sun Y, Zhang R, Zhang K, Lin G, Xie J, Li J, Wang L (2015) Using a novel microRNA delivery system to inhibit osteoclastogenesis. Int J Mol Sci 16:8337–8350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Youngson NA, Lin PC, Lin SS (2014) The convergence of autophagy, small RNA and the stress response-implications for transgenerational epigenetic inheritance in plants. Biomol Concepts 5:1–8

    Article  CAS  PubMed  Google Scholar 

  121. Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019–1030

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Deng H, Gao K, Jankovic J (2014) The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 10:337–348

    Article  CAS  PubMed  Google Scholar 

  124. Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, Lee JA (2014) Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 35:2822–2831

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by Natural Science Foundation of China [81503591], the Science and Technology Projects of Guangdong Province [2014A020221021], the Natural Science Foundation of Guangdong Province [2014A030310082], a Grant from Guangzhou University of Chinese Medicine for excellent Young Scholars Project [KAB110133K04], and the Disciplinary Construction Fund of Education Department in Guangdong Province for Young Researcher Project [2013LYM-0012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Jiang.

Ethics declarations

Conflict of Interest

Gengyang Shen, Hui Ren, Ting Qiu, De Liang, Bo Xie, Zhida Zhang, Zhensong Yao, Zhidong Yang and Xiaobing Jiang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Ren, H., Qiu, T. et al. Implications of the Interaction Between miRNAs and Autophagy in Osteoporosis. Calcif Tissue Int 99, 1–12 (2016). https://doi.org/10.1007/s00223-016-0122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0122-x

Keywords

Navigation