Skip to main content
Log in

A 3-Year Physical Activity Intervention Program Increases the Gain in Bone Mineral and Bone Width in Prepubertal Girls but not Boys: The Prospective Copenhagen School Child Interventions Study (CoSCIS)

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of increasing the amount of time spent in physical education classes on bone mineral accrual and gain in bone size in prepubertal Danish children. A total of 135 boys and 108 girls, aged 6–8 years, were included in a school-based curriculum intervention program where the usual time spent in physical education classes was doubled to four classes (180 min) per week. The control group comprised age-matched children (62 boys and 76 girls) recruited from a separate community who completed the usual Danish school curriculum of physical activity (90 min/week). Dual-energy X-ray absorptiometry was used to evaluate bone mineral content (BMC; g), bone mineral density (g/cm2), and bone width at the calcaneus and distal forearm before and after 3 years of intervention. Anthropometrics and Tanner stages were evaluated on the same occasions. General physical activity was measured with an accelerometer worn for 4 days. In girls, the intervention group had a 12.5% increase (P = 0.04) in distal forearm BMC and a 13.2% increase (P = 0.005) in distal forearm scanned area compared with girls in the control group. No differences were found between the intervention and control groups in boys. Increasing the frequency of physical education classes for prepubertal children is associated with a higher accrual of bone mineral and higher gain in bone size after 3 years in girls but not in boys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Davies JH, Evans BAJ, Gregory JW (2005) Bone mass acquisition in healthy children. Arch Dis Child 90:373–378

    Article  PubMed  CAS  Google Scholar 

  2. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

  3. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    PubMed  CAS  Google Scholar 

  4. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    PubMed  CAS  Google Scholar 

  5. Lanyon LE, Rubin CT (1984) Static vs. dynamic loads as an influence on bone remodelling. J Biomech 17:897–905

    Article  PubMed  CAS  Google Scholar 

  6. Khan K, McKay HA, Kannus P, Bailey DA, Wark JD, Bennell KL (2001) Physical activity and bone health. Human Kinetics, Champaign, IL

    Google Scholar 

  7. Sundberg M, Gardsell P, Johnell O, Karlsson MK, Ornstein E, Sandstedt B, Sernbo I (2002) Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: a combined cross-sectional and 3-year longitudinal study. Calcif Tissue Int 71:406–415

    Article  PubMed  CAS  Google Scholar 

  8. Gutin B, Kasper MJ (1992) Can vigorous exercise play a role in osteoporosis prevention? A review. Osteopor Int 2:55–69

    Article  CAS  Google Scholar 

  9. Forwood MR, Burr DB (1993) Physical activity and bone mass: exercise infutility? Bone Mineral 21:89–112

    Article  CAS  Google Scholar 

  10. Nordström P, Pettersson U, Lorentzon R (1998) Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J Bone Miner Res 13:1141–1148

    Article  PubMed  Google Scholar 

  11. Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD (1997) Prospective 10-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 12:1453–1462

    Article  PubMed  CAS  Google Scholar 

  12. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821

    Article  PubMed  CAS  Google Scholar 

  13. MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM (2002) Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res 17:834–844

    Article  PubMed  CAS  Google Scholar 

  14. McKay HA, Petit MA, Schultz RW, Prior JC, Barr SI, Khan KM (2000) Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr 136:156–162

    Article  PubMed  CAS  Google Scholar 

  15. MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA (2003) A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics 112:e447–e452

    Article  PubMed  Google Scholar 

  16. MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA (2004) Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 34:755–764

    Article  PubMed  Google Scholar 

  17. MacKelvie KJ, McKay HA, Khan KM, Crocker PR (2001) A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 139:501–508

    Article  PubMed  CAS  Google Scholar 

  18. Valdimarsson O, Linden C, Johnell O, Gardsell P, Karlsson MK (2006) Daily physical education in the school curriculum in prepubertal girls during 1 year is followed by an increase in bone mineral accrual and bone width—data from the prospective controlled Malmo Pediatric Osteoporosis Prevention Study. Calcif Tissue Int 78:65–71

    Article  PubMed  CAS  Google Scholar 

  19. Linden C, Alwis G, Ahlborg H, Gardsell P, Valdimarsson O, Stenevi-Lundgren S, Besjakov J, Karlsson MK (2007) Exercise, bone mass and bone size in prepubertal boys: one-year data from the Pediatric Osteoporosis Prevention Study. Scand J Med Sci Sports 17:340–347

    PubMed  CAS  Google Scholar 

  20. Linden C, Ahlborg HG, Besjakov J, Gardsell P, Karlsson MK (2006) A school curriculum–based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the Pediatric Osteoporosis Prevention (POP) study. J Bone Miner Res 21:829–835

    Article  PubMed  Google Scholar 

  21. Bailey RC, Olson J, Pepper SL, Porzasz J, Barstow TJ, Cooper DM (1995) The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc 27:1033–1041

    Article  PubMed  CAS  Google Scholar 

  22. De Lorenzo A, Bertini I, Candeloro N, Iacopino L, Andreoli A, Van Loan MD (1998) Comparison of different techniques to measure body composition in moderately active adolescents. Br J Sports Med 32:215–219

    Article  PubMed  Google Scholar 

  23. Altmann DG (1991) Practical Statistics for Medical Research. Chapman & Hall, London

    Google Scholar 

  24. Janz KF, Burns TL, Levy SM, Torner JC, Willing MC, Beck TJ, Gilmore JM, Marshall TA (2004) Everyday activity predicts bone geometry in children: the Iowa Bone Development Study. Med Sci Sports Exerc 36:1124–1131

    Article  PubMed  Google Scholar 

  25. Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, Warren JJ (2001) Physical activity and bone measures in young children: the Iowa Bone Development Study. Pediatrics 107:1387–1393

    Article  PubMed  CAS  Google Scholar 

  26. Ridgers ND, Stratton G, Fairclough SJ (2005) Assessing physical activity during recess using accelerometry. Prev Med 41:102–107

    Article  PubMed  Google Scholar 

  27. Riddoch CJ, Bo AL, Wedderkopp N, Harro M, Klasson-Heggebo L, Sardinha LB, Cooper AR, Ekelund U (2004) Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc 36:86–92

    Article  PubMed  Google Scholar 

  28. Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, Sirard J (2002) Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc 34:350–355

    Article  PubMed  Google Scholar 

  29. Hasselstrom H, Karlsson KM, Hansen SE, Gronfeldt V, Froberg K, Andersen LB (2006) Sex differences in bone size and bone mineral density exist before puberty. The Copenhagen School Child Intervention Study (CoSCIS). Calcif Tissue Int 79:7–14

    Article  PubMed  CAS  Google Scholar 

  30. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res 14:1672–1679

    Article  PubMed  CAS  Google Scholar 

  31. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507

    Article  PubMed  CAS  Google Scholar 

  32. Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156

    Article  PubMed  CAS  Google Scholar 

  33. McKay HA, Petit MA, Bailey DA, Wallace WM, Schutz RW, Khan KM (2000) Analysis of proximal femur DXA scans in growing children: comparisons of different protocols for cross-sectional 8-month and 7-year longitudinal data. J Bone Miner Res 15:1181–1188

    Article  PubMed  CAS  Google Scholar 

  34. Cussler EC, Going SB, Houtkooper LB, Stanford VA, Blew RM, Flint-Wagner HG, Metcalfe LL, Choi JE, Lohman TG (2005) Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int 16:2129–2141

    Article  PubMed  CAS  Google Scholar 

  35. Robling AG, Hinant FM, Burr DB, Turner CH (2002) Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17:1545–1554

    Article  PubMed  Google Scholar 

  36. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280

    Article  PubMed  CAS  Google Scholar 

  37. Janz K (2002) Physical activity and bone development during childhood and adolescence. Implications for the prevention of osteoporosis. Minerva Pediatr 54:93–104

    PubMed  CAS  Google Scholar 

  38. Branca F, Valtuena S, Vatuena S (2001) Calcium, physical activity and bone health–building bones for a stronger future. Public Health Nutr 4:117–123

    Article  PubMed  CAS  Google Scholar 

  39. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  PubMed  CAS  Google Scholar 

  40. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2003) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 18:352–359

    Article  PubMed  Google Scholar 

  41. Duan Y, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 16:2276–2283

    Article  PubMed  CAS  Google Scholar 

  42. Seeman E, Duan Y, Fong C, Edmonds J (2001) Fracture site–specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 16:120–127

    Article  PubMed  CAS  Google Scholar 

  43. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  44. Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by funding from the Danish Heart Foundation, the National Board of Health, the Danish Ministry of Health, the Danish Ministry of Culture, and the Danish Sport Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Hasselstrøm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasselstrøm, H.A., Karlsson, M.K., Hansen, S.E. et al. A 3-Year Physical Activity Intervention Program Increases the Gain in Bone Mineral and Bone Width in Prepubertal Girls but not Boys: The Prospective Copenhagen School Child Interventions Study (CoSCIS). Calcif Tissue Int 83, 243–250 (2008). https://doi.org/10.1007/s00223-008-9166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9166-x

Keywords

Navigation