Skip to main content
Log in

Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We develop a theory of Tannakian Galois groups for t-motives and relate this to the theory of Frobenius semilinear difference equations. We show that the transcendence degree of the period matrix associated to a given t-motive is equal to the dimension of its Galois group. Using this result we prove that Carlitz logarithms of algebraic functions that are linearly independent over the rational function field are algebraically independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G.W.: t-motives. Duke Math. J. 53, 457–502 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anderson, G.W., Brownawell, W.D., Papanikolas, M.A.: Determination of the algebraic relations among special Γ-values in positive characteristic. Ann. Math. (2) 160, 237–313 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Anderson, G.W., Thakur, D.S.: Tensor powers of the Carlitz module and zeta values. Ann. Math. (2) 132, 159–191 (1990)

    Article  MathSciNet  Google Scholar 

  4. André, Y.: Différentielles non commutatives et théeorie de Galois différentielle ou aux différences. Ann. Sci. Éc. Norm. Supér., IV. Sér. 34, 685–739 (2001)

    MATH  Google Scholar 

  5. Bertolin, C.: Périodes de 1-motifs et transcendance. J. Number Theory 97, 204–221 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beukers, F.: Differential Galois theory. In: From Number Theory to Physics (Les Houches, 1989), pp. 413–439. Springer, Berlin (1992)

    Google Scholar 

  7. Böckle, G., Hartl, U.: Uniformizable families of t-motives. Trans. Am. Math. Soc. 359, 3933–3972 (2007)

    MATH  Google Scholar 

  8. Breen, L.: Tannakian categories. In: Motives (Seattle, WA, 1991). Proc. Sympos. Pure Math., vol. 55, part 1, pp. 337–376. Am. Math. Soc., Providence, RI (1994)

  9. Brownawell, W.D.: Transcendence in positive characteristic. In: Number Theory (Tiruchirapalli, 1996). Contemp. Math., vol. 210, pp. 317–332. Am. Math. Soc., Providence, RI (1998)

    Google Scholar 

  10. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift, Vol. II. Progr. Math., vol. 87, pp. 111–195. Birkhäuser, Boston, MA (1990)

    Google Scholar 

  11. Deligne, P., Milne, J.S., Ogus, A., Shih, K.-Y.: Hodge Cycles, Motives, and Shimura Varieties. Lect. Notes Math., vol. 900. Springer, Berlin (1982)

    MATH  Google Scholar 

  12. Denis, L.: Independence algébrique de logarithmes en caractéristique p. Bull. Austral. Math. Soc. 74, 461–470 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fresnel, J., van der Put, M.: Rigid Analytic Geometry and its Applications. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  14. Goss, D.: Drinfeld modules: cohomology and special functions. In: Motives (Seattle, WA, 1991). Proc. Sympos. Pure Math., vol. 55, part 2, pp. 309–362. Am. Math. Soc., Providence, RI (1994)

  15. Goss, D.: Basic Structures of Function Field Arithmetic. Springer, Berlin (1996)

    MATH  Google Scholar 

  16. Hartl, U., Pink, R.: Vector bundles with a Frobenius structure on the punctured unit disc. Compos. Math. 140, 689–716 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kedlaya, K.S.: The algebraic closure of the power series field in positive characteristic. Proc. Am. Math. Soc. 129, 3461–3470 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  19. Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78, 555–563 (1956)

    Article  MATH  Google Scholar 

  20. Magid, A.R.: Lectures on Differential Galois Theory. Univ. Lect. Ser., vol. 7. Am. Math. Soc., Providence, RI (1994)

    MATH  Google Scholar 

  21. Matsumura, H.: Commutative Algebra, 2nd edn. Benjamin/Cummings Publ., Reading, MA (1980)

    MATH  Google Scholar 

  22. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  23. Pink, R.: Hodge structures for function fields. Preprint (1997) http://www.math.ethz.ch/∼pink/

  24. van der Put, M.: Galois theory of differential equations, algebraic groups and Lie algebras. J. Symb. Comput. 28, 441–472 (1999)

    Article  MATH  Google Scholar 

  25. van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. Lect. Notes Math., vol. 1666. Springer, Berlin (1997)

    MATH  Google Scholar 

  26. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  27. Ribenboim, P.: Fields: algebraically closed and others. Manuscr. Math. 75, 115–150 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sinha, S.K.: Periods of t-motives and transcendence. Duke Math. J. 88, 465–535 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Taguchi, Y.: The Tate conjecture for t-motives. Proc. Am. Math. Soc. 123, 3285–3287 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tamagawa, A.: The Tate conjecture and the semisimplicity conjecture for t-modules. RIMS Kokyuroku 925, 89–94 (1995)

    MathSciNet  Google Scholar 

  31. Thakur, D.S.: Function Field Arithmetic. World Scientific Publishing, River Edge, NJ (2004)

    MATH  Google Scholar 

  32. Waterhouse, W.C.: Introduction to Affine Group Schemes. Springer, New York (1979)

    MATH  Google Scholar 

  33. Yu, J.: Analytic homomorphisms into Drinfeld modules. Ann. Math. (2) 145, 215–233 (1997)

    Article  MATH  Google Scholar 

  34. Zariski, O., Samuel, P.: Commutative Algebra, Vol. II. Springer, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Papanikolas.

Additional information

Mathematics Subject Classification (2000)

Primary: 11J93; Secondary: 11G09, 12H10, 14L17

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papanikolas, M. Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms . Invent. math. 171, 123–174 (2008). https://doi.org/10.1007/s00222-007-0073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0073-y

Keywords

Navigation