Skip to main content
Log in

Temporal and spectral audiotactile interactions in musicians

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous investigations have revealed that the complex sensory exposure of musical training alters audiovisual interactions. As of yet, there has been little evidence on the effects of musical training on audiotactile interactions at a behavioural level. Here, we tested audiotactile interaction in musicians using the audiotactile illusory flash and the parchment-skin illusion. Significant differences were only found between musicians and non-musicians for the audiotactile illusory flash. Both groups had similar task-relevant unisensory abilities, but unlike non-musicians, the number of auditory stimulations did not have a statistically important influence on the number of perceived tactile stimulations for musicians. Musicians and non-musicians similarly perceived the parchment-skin illusion. Spectral alterations of self-generated palmar sounds similarly altered the perception of wetness and dryness for both groups. These results suggest that musical training does not seem to alter multisensory interactions at large. The specificity of the sensory enhancement suggests that musical training specifically alters processes underlying the interaction of temporal audiotactile stimuli and not the global interaction between these modalities. These results are consistent with previous unisensory and multisensory investigations on sensory abilities related to audiotactile processing in musicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SI:

Susceptibility index

References

  • Bresciani JP, Dammeier F, Ernst MO (2006) Vision and touch are automatically integrated for the perception of sequences of events. J Vis 6:554–564

    Article  PubMed  Google Scholar 

  • Champoux F, Collignon O, Bacon BA, Lepore F, Zatorre RJ, Théoret H (2010) Early-and late-onset blindness both curb audiotactile integration on the parchment-skin illusion. Psychol Sci 22:19–25

    Article  PubMed  Google Scholar 

  • Cohen J, MacWhinney B, Flatt M, Provost J (1993) PsyScope: an interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh computers. Behav Res Methods Instrum Comput 25:257–271

    Article  Google Scholar 

  • Elbert T, Pantev C, Wlenbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270:305–307

    Article  CAS  PubMed  Google Scholar 

  • Foxe JJ (2009) Multisensory integration: frequency tuning of audio-tactile integration. Curr Biol 19:R373–R375

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki W, Nishida SY (2009) Audio-tactile superiority over visuo-tactile and audio-visual combinations in the temporal resolution of synchrony perception. Exp Brain Res 198:245–259

    Article  PubMed  Google Scholar 

  • Guest S, Catmur C, Lloyd D, Spence C (2002) Audiotactile interactions in roughness perception. Exp Brain Res 146:161–171

    Article  PubMed  Google Scholar 

  • Herholz SC, Zatorre RJ (2012) Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron 76:486–502

    Article  CAS  PubMed  Google Scholar 

  • Hodges DA, Hairston WD, Burdette JH (2005) Aspects of multisensory perception: the integration of visual and auditory information in musical experiences. Ann NY Acad Sci 1060:175–185

    Article  PubMed  Google Scholar 

  • Hong KS, Santosa H (2016) Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res 333:157–166

    Article  PubMed  Google Scholar 

  • Hötting K, Röder B (2004) Hearing cheats touch, but less in congenitally blind than in sighted individuals. Psychol Sci 15:60–64

    Article  PubMed  Google Scholar 

  • Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) The effects of musical training on structural brain development: a longitudinal study. Ann NY Acad Sci 1169:182–186

    Article  PubMed  Google Scholar 

  • Jousmäki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8:R190

    Article  PubMed  Google Scholar 

  • Kuchenbuch A, Paraskevopoulos E, Herholz SC, Pantev C (2014) Audio-tactile integration and the influence of musical training. PLoS ONE 9:e85743

    Article  PubMed  PubMed Central  Google Scholar 

  • Landry SP, Guillemot JP, Champoux F (2013) Temporary deafness can impair multisensory integration: a study of cochlear-implant users. Psychol Sci 24:1260–1268

    Article  PubMed  Google Scholar 

  • Lappe C, Herholz SC, Trainor LJ, Pantev C (2008) Cortical plasticity induced by short-term unimodal and multimodal musical training. J Neurosci 28:9632–9639

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Noppeney U (2011) Long-term music training tunes how the brain temporally binds signals from multiple senses. Proc Natl Acad Sci USA 108:E1441–E1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Noppeney U (2014) Music expertise shapes audiovisual temporal integration windows for speech, sinewave speech, and music. Front Psychol 5:868

    PubMed  PubMed Central  Google Scholar 

  • Luo C, Guo ZW, Lai YX, Liao W, Liu Q, Kendrick KM, Yao DZ (2012) Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state fMRI. PLoS ONE 7:e36568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748

    Article  CAS  PubMed  Google Scholar 

  • Moreno S, Marques C, Santos A, Santos M, Castro SL, Besson M (2009) Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex 19:712–723

    Article  PubMed  Google Scholar 

  • Müllensiefen D, Gingras B, Musil J, Stewart L (2014) The musicality of non-musicians: an index for assessing musical sophistication in the general population. PLoS ONE 9:e89642

    Article  PubMed  PubMed Central  Google Scholar 

  • Münte TF, Altenmüller E, Jäncke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3:473–478

    PubMed  Google Scholar 

  • Musacchia G, Sams M, Skoe E, Kraus N (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci USA 104:15894–15898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musacchia G, Strait D, Kraus N (2008) Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hear Res 241:34–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasir SM, Ostry DJ (2008) Speech motor learning in profoundly deaf adults. Nat Neurosci 11:1217–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392:811–814

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Paraskevopoulos E, Kuchenbuch A, Lu Y, Herholz SC (2015) Musical expertise is related to neuroplastic changes of multisensory nature within the auditory cortex. Eur J Neurosci 41:709–717

    Article  PubMed  Google Scholar 

  • Petrini K, Dahl S, Rocchesso D, Waadeland CH, Avanzini F, Puce A, Pollick FE (2009) Multisensory integration of drumming actions: musical expertise affects perceived audiovisual asynchrony. Exp Brain Res 198:339–352

    Article  PubMed  Google Scholar 

  • Santosa H, Hong MJ, Hong KS (2014) Lateralization of music processing auditory cortex: an fNIRS study. Front Behav Neurosci 8:418

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz M, Ross B, Pantev C (2003) Evidence for training-induced cross modal reorganization of cortical functions in trumpet players. NeuroReport 14:157–161

    Article  Google Scholar 

  • Schwartz JL (2010) A reanalysis of McGurk data suggests that audiovisual fusion in speech perception is subject-dependent. J Acoust Soc Am 127:1584–1594

    Article  PubMed  Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of a single neuron. Nat Rev Neurosci 9:255–266

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RA, Zemtsov RK, Wallace MT (2012) Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. J Exp Psychol Hum Percept Perform 38:1517–1529

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace MT, Stein BE (2007) Early experience determines how the senses will interact. J Neurophysiol 97:921–926

    Article  PubMed  Google Scholar 

  • Wollman I, Fritz C, Poitevineau J (2014) Influence of vibrotactile feedback on some perceptual features of violins. J Acoust Soc Am 136(2):910–921

    Article  PubMed  Google Scholar 

  • Yau JM, Olenczak JB, Dammann JF, Bensmaia SJ (2009) Temporal frequency channels are linked across audition and touch. Curr Biol 19:561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Roy for her help in the preliminary data collection and their funding sources: the Canadian Institutes of Health Research, Fonds de Recherche du Québec—Santé, and Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Champoux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, S.P., Sharp, A., Pagé, S. et al. Temporal and spectral audiotactile interactions in musicians. Exp Brain Res 235, 525–532 (2017). https://doi.org/10.1007/s00221-016-4813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4813-3

Keywords

Navigation