Skip to main content

Advertisement

Log in

Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The purposes of this pilot study were to create a model of focal cortical ischemia in Macaca fascicularis and to explore contributions of the reticulospinal system in recovery of reaching. Endothelin-1 was used to create a focal lesion in the shoulder/elbow representation of left primary motor cortex (M1) of two adult female macaques. Repetitive microstimulation was used to map upper limb motor outputs from right and left cortical motor areas and from the pontomedullary reticular formation (PMRF). In subject 1 with a small lesion and spontaneous recovery, reaching was mildly impaired. Changes were evident in the shoulder/elbow representations of both the lesioned and contralesional M1, and there appeared to be fewer than expected upper limb responses from the left (ipsilesional) PMRF. In subject 2 with a substantial lesion, reaching was severely impaired immediately after the lesion. After 12 weeks of intensive rehabilitative training, reach performance recovered to near-baseline levels, but movement times remained about 50 % slower. Surprisingly, the shoulder/elbow representation in the lesioned M1 remained completely absent after recovery, and there was a little change in the contralesional M1. There was a definite difference in motor output patterns for left versus right PMRF for this subject, with an increase in right arm responses from right PMRF and a paucity of left arm responses from left PMRF. The results are consistent with increased reliance on PMRF motor outputs for recovery of voluntary upper limb motor control after significant cortical ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adkins DL, Voorhies AC, Jones TA (2004) Behavioral and neuroplastic effects of focal endothelin-1 induced sensorimotor cortex lesions. Neuroscience 128:473–486

    Article  CAS  PubMed  Google Scholar 

  • Aizawa H, Inase M, Mushiake H, Shima K, Tanji J (1991) Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Exp Brain Res 84:668–671

    Article  CAS  PubMed  Google Scholar 

  • Alagona G, Delvaux V, Gerard P, De Pasqua V, Pennisi G, Delwaide PJ, Nicoletti F, de Maertens NA (2001) Ipsilateral motor responses to focal transcranial magnetic stimulation in healthy subjects and acute-stroke patients. Stroke 32:1304–1309

    Article  CAS  PubMed  Google Scholar 

  • Belhaj-Saif A, Cheney PD (2000) Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract. J Neurophysiol 83:3147–3153

    CAS  PubMed  Google Scholar 

  • Biernaskie J, Corbett D, Peeling J, Wells J, Lei H (2001) A serial MR study of cerebral blood flow changes and lesion development following endothelin-1-induced ischemia in rats. Magn Reson Med 46:827–830

    Article  CAS  PubMed  Google Scholar 

  • Buford J (1996) A preliminary description of movement-related and preparatory activity in primate reticular formation (motor function). J Jpn Phys Ther Assoc 23:11–30

    Google Scholar 

  • Buford JA and Davidson AG (2004). Movement-related and preparatory activity in the reticular formation during a bilateral reaching task. Accessed 11 Jan 2004

  • Butefisch CM, Kleiser R, Korber B (2005) Recruitment of contralesional motor cortex in stroke patients with recovery of hand function. Neurology 64:1067–1069

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRX 2:396–409

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264

    Article  PubMed  Google Scholar 

  • Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29:63–71

    Article  CAS  PubMed  Google Scholar 

  • Coles J, Glees P (1954) Effects of small lesions in sensory cortex in trained monkeys. J Neurophysiol 17:1–13

    Google Scholar 

  • Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR (2007) Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 13:561–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527

    Article  CAS  PubMed  Google Scholar 

  • Dancause N, Nudo RJ (2011) Shaping plasticity to enhance recovery after injury. Prog Brain Res 192:273–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ (2005) Extensive cortical rewiring after brain injury. J Neurosci 25:10167–10179

    Article  CAS  PubMed  Google Scholar 

  • Dancause N, Barbay S, Frost SB, Zoubina EV, Plautz EJ, Mahnken JD, Nudo RJ (2006) Effects of small ischemic lesions in the primary motor cortex on neurophysiological organization in ventral premotor cortex. J Neurophysiol 96:3506–3511

    Article  PubMed  Google Scholar 

  • Davidson AG, Buford JA (2004) Motor outputs from the primate reticular formation to shoulder muscles as revealed by stimulus triggered averaging. J Neurophysiol 92:83–95

    Article  PubMed Central  PubMed  Google Scholar 

  • Davidson AG, Buford JA (2006) Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res 173:25–39

    Article  PubMed  Google Scholar 

  • Davidson AG, Chan V, O’Dell R, Schieber MH (2007) Rapid changes in throughput from single motor cortex neurons to muscle activity. Science 318:1934–1937

    Article  CAS  PubMed  Google Scholar 

  • Dewald JPA, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118:495–510

    Article  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    CAS  PubMed  Google Scholar 

  • Edgley SA, Jankowska E, Hammar I (2004) Ipsilateral actions of feline corticospinal tract neurons on limb motoneurons. J Neurosci 24:7804–7813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisner-Janowicz I, Barbay S, Hoover E, Stowe AM, Frost SB, Plautz EJ, Nudo RJ (2008) Early and late changes in the distal forelimb representation of the supplementary motor area after injury to frontal motor areas in the squirrel monkey. J Neurophysiol 100:1498–1512

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellis MD, Holubar BG, Acosta AM, Beer RF, Dewald JPA (2005) Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke. Muscle Nerve 32:170–178

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellis MD, Acosta AM, Yao J, Dewald JPA (2007) Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity. Exp Brain Res 176:594–602

    Article  PubMed Central  PubMed  Google Scholar 

  • Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, Burnod Y, Maier MA (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33:1610–1617

    Article  CAS  PubMed  Google Scholar 

  • Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89:3205–3214

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Kurosawa N, Cintra A, Hallstrom A, Goiny M, Rosen L, Agnati LF, Ungerstedt U (1992) Involvement of local ischemia in endothelin-1 induced lesions of the neostriatum of the anaesthetized rat. Exp Brain Res 88:131–139

    Article  CAS  PubMed  Google Scholar 

  • Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194

    Article  CAS  PubMed  Google Scholar 

  • Gartshore G, Dawson D, Patterson J, Macrae IM (1996) Topographic profile of reperfusion into MCA territory following endothelin-1-induced transient focal cerebral ischaemia. Neurosci Lett 202:209–213

    Article  CAS  PubMed  Google Scholar 

  • Garzel L, Green J, Mattox L, Herbert W, Moran S, Buford J, Lewis S (2009) Anesthetic protocol for an extended duration electrophysiology study in cynomolgus macaques. J Am Assoc Lab Anim Sci 48:570

    Google Scholar 

  • Gerriets T, Li F, Silva M, Meng X, Brevard M, Sotak C, Fisher M (2003) The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods 122:201–211

    Article  PubMed  Google Scholar 

  • Gilmour G, Iversen SD, Neill MF, Bannerman DM (2004) The effects of intracortical endothelin-1 injections on skilled forelimb use: implications for modelling recovery of function after stroke. Behav Brain Res 150:171–183

    Article  CAS  PubMed  Google Scholar 

  • Glees P, Cole J (1949) The reappearance of coordinated movements of the hand after lesions in the hand area of the motor cortex of the rhesus monkey. J Physiol 108:Proc-33

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER III, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2014) Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:399–410

    Article  PubMed  Google Scholar 

  • Harris-Love ML, Morton SM, Perez MA, Cohen LG (2011) Mechanisms of short-term training-induced reaching improvement in severely hemiparetic stroke patients: a TMS study. Neurorehabil Neural Repair 25:398–411

    Article  PubMed Central  PubMed  Google Scholar 

  • Herbert WJ, Montgomery LR, Buford JA (2010) Contributions of the corticospinal and reticulospinal systems in recovery of reaching following cortical ischemic brain injury in the non-human primate. J Neurol Phys Ther 34:222

    Google Scholar 

  • Honda M, Nagamine T, Fukuyama H, Yonekura Y, Kimura J, Shibasaki H (1997) Movement-related cortical potentials and regional cerebral blood flow change in patients with stroke after motor recovery. J Neurol Sci 146:117–126

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E, Edgley SA (2006) How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist 12:67–79

    Article  PubMed Central  PubMed  Google Scholar 

  • Jankowska E, Cabaj A, Pettersson LG (2005) How to enhance ipsilateral actions of pyramidal tract neurons. J Neurosci 25:7401–7405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaeser M, Wyss AF, Bashir S, Hamadjida A, Liu Y, Bloch J, Brunet JF, Belhaj-Saif A, Rouiller EM (2010) Effects of unilateral motor cortex lesion on ipsilesional hand’s reach and grasp performance in monkeys: relationship with recovery in the contralesional hand. J Neurophysiol 103:1630–1645

    Article  PubMed  Google Scholar 

  • Kawaguchi M, Shimizu K, Furuya H, Sakamoto T, Ohnishi H, Karasawa J (1996) Effect of isoflurane on motor-evoked potentials induced by direct electrical stimulation of the exposed motor cortex with single, double, and triple stimuli in rats. Anesthesiology 85:1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Kozuimi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1–8

    Article  Google Scholar 

  • Liepert J, Graef S, Uhde I, Leidner O, Weiller C (2000) Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand 101:321–326

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Rouiller EM (1999) Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Exp Brain Res 128:149–159

    Article  CAS  PubMed  Google Scholar 

  • Macrae IM, Robinson MJ, Graham DI, Reid JL, McCulloch J (1993a) Endothelin-1-induced reductions in cerebral blood flow: dose dependency, time course, and neuropathological consequences. J Cereb Blood Flow Metab 13:276–284

    Article  CAS  PubMed  Google Scholar 

  • Macrae IM, Robinson MJ, Graham DI, Reid JL, McCulloch J (1993b) Endothelin-1-induced reductions in cerebral blood flow: dose dependency, time course, and neuropathological consequences. J Cereb Blood Flow Metab 13:276–284

    Article  CAS  PubMed  Google Scholar 

  • Maier MA, Armand J, Kirkwood PA, Yand HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12:281–296

    Article  CAS  PubMed  Google Scholar 

  • Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31:656–661

    Article  CAS  PubMed  Google Scholar 

  • McNeal DW, Darling WG, Ge J, Silwell-Morecraft K, Solon K, Hynes S, Pizzimenti M, Rotella D, Vanadurongvan T, Morecraft R (2010) Selective long-term reorganization of the corticospinal projection from the supplementary motor cortex following recovery from lateral motor cortex injury. J Comp Neurol 518:586–621

    Article  PubMed Central  PubMed  Google Scholar 

  • Montgomery LR, Herbert WJ, Buford JA (2013) Recruitment of ipsilateral and contralateral upper limb muscles following stimulation of the cortical motor areas in the monkey. Exp Brain Res 230:153–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nair DG, Hutchinson S, Fregni F, Alexander M, Pascual-Leone A, Schlaug G (2007) Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. NeuroImage 34:253–263

    Article  PubMed Central  PubMed  Google Scholar 

  • Netz J, Lammers T, Homberg V (1997) Reorganization of motor output in the non-affected hemisphere after stroke. Brain 120:1579–1586

    Article  PubMed  Google Scholar 

  • Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S (2005) Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 36:1480–1484

    Article  PubMed  Google Scholar 

  • Nudo RJ (2007) Postinfarct cortical plasticity and behavioral recovery. Stroke 38:840–845

    Article  PubMed  Google Scholar 

  • Nudo RJ, Milliken GW (1996) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75:2144–2149

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    CAS  PubMed  Google Scholar 

  • Peuser J, Belhaj-Saif A, Hamadjida A, Schmidlin E, Gindrat AD, Volker AC, Zakharov P, Hoogewoud HM, Rouiller EM, Scheffold F (2011) Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates. J Biomed Opt 16:096011

    Article  PubMed  Google Scholar 

  • Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2001) Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke 32:1134–1139

    Article  CAS  PubMed  Google Scholar 

  • Rathelot JA, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal cells. PNAS 106:918–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rho MJ, Cabana T, Drew T (1997) Organization of the projections from the pericruciate cortex to the pontomedullary reticular formation of the cat: a quantitative retrograde tracing study. J Comp Neurol 388:228–249

    Article  CAS  PubMed  Google Scholar 

  • Riddle CN, Edgley SA, Baker SN (2009) Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci 29:4993–4999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson MJ, Macrae IM, Todd M, Reid JL, McCulloch J (1990) Reduction of local cerebral blood flow to pathological levels by endothelin-1 applied to the middle cerebral artery in the rat. Neurosci Lett 118:269–272

    Article  CAS  PubMed  Google Scholar 

  • Schepens B, Drew T (2003) Strategies for the integration of posture and movement during reaching in the cat. J Neurophysiol 90:3066–3086

    Article  PubMed  Google Scholar 

  • Serrien DJ, Strens LH, Cassidy MJ, Thompson AJ, Brown P (2004) Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Exp Neurol 190:425–432

    Article  PubMed  Google Scholar 

  • Sharkey J, Ritchie IM, Kell PAT (1993) Perivascular microapplication of endothelin-1: a new model of focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 13:865–871

    Article  CAS  PubMed  Google Scholar 

  • Szabo J, Cowan WM (1984) A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). J. Comp Neurol 222:265–300

    Article  CAS  PubMed  Google Scholar 

  • Tecchio F, Zappasodi F, Tombini M, Oliviero A, Pasqualetti P, Vernieri F, Ercolani M, Pizzella V, Rossini PM (2006) Brain plasticity in recovery from stroke: an MEG assessment. Neuroimage 32:1326–1334

    Article  PubMed  Google Scholar 

  • Turton A, Wroe S, Trepte N, Fraser C, Lemon RN (1996) Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol 101:316–328

    Article  CAS  PubMed  Google Scholar 

  • Verleger R, Adam S, Rose M, Vollmer C, Wauschkuhn B, Kompf D (2003) Control of hand movements after striatocapsular stroke: high-resolution temporal analysis of the function of ipsilateral activation. Clin Neurophysiol 114:1468–1476

    Article  PubMed  Google Scholar 

  • Windle V, Szymanska A, Granter-Button S, White C, Buist R, Peeling J, Corbett D (2006) An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 201:324–334

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  CAS  PubMed  Google Scholar 

  • Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN (2012) Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 135:2277–2289

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Stephanie Moran for excellent technical support, Lynnette Montgomery for assistance with data collection, Lyn Jakeman for guidance with Dr. Herbert’s dissertation project and the members of the ULAR staff who provided support during these surgeries. Funding for this project was provided by a Research Investment Fund award from The Ohio State University College of Medicine and School of Health and Rehabilitation Sciences to JA Buford and in part by PODS I and PODS II awards to WJ Herbert from the Foundation for Physical Therapy, Inc. The authors would also like to acknowledge the Small Animal Imaging Core: Supported in part by Grant NINDS/P30 Core Grant (NS045758), National Cancer Institute, Bethesda, Maryland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Buford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbert, W.J., Powell, K. & Buford, J.A. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res 233, 3231–3251 (2015). https://doi.org/10.1007/s00221-015-4390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4390-x

Keywords

Navigation