Skip to main content
Log in

Intersegmental coordination scales with gait speed similarly in men and women

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 25 April 2016

Abstract

We applied principal component analysis (PCA) to thigh, shank, and foot elevation angles to examine the impact of speed on intra-limb coordination during gait. The specific aims were to (1) determine speed-related changes in segment loadings on three principal components (PCs) and (2) examine differences between men and women. The subjects (26 women, 21 men) walked overground at five self-selected paces (very slow, slow, normal, fast, very fast). PCA yielded percent variation (PV) explained by each PC and thigh, shank, and foot loadings on PC1–PC3. These parameters were regressed against the speed normalized to body height (BH/s) to derive individual and aggregate slopes and P values, separately for men and women. PV1 increased with speed, whereas PV2 and PV3 decreased (all P < 0.001). The loadings of thigh and foot segments on PC1 increased with speed (0.14 and 0.04 per BH/s, P < 0.001, respectively), and the loading of shank decreased (−0.10, P < 0.001). Compared to PC1, the changes in segment loadings on PC3 were the opposite (thigh −0.18, shank 0.09, foot −0.04 per BH/s, P < 0.001). The changes in segment loadings on PC2 were inconsistent and generally small. The only significance (P = 0.006), albeit a minor difference between men and women, was in the slope of thigh loading on PC2 (−0.005 ± 0.019 and 0.015 ± 0.026 per BH/s, respectively). We conclude that intersegmental coordination during gait scales with speed, with the greatest impact on the thigh segment, but no differently between men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beauchet O, Annweiler C, Lecordroch Y, Allali G, Dubost V, Herrmann FR, Kressig RW (2009) Walking speed-related changes in stride time variability: effects of decreased speed. J Neuroeng Rehabil 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Bejek Z, Paroczai R, Illyes A, Kiss RM (2006) The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg Sports Traumatol Arthrosc 14:612–622

    Article  PubMed  Google Scholar 

  • Besier TF, Fredericson M, Gold GE, Beaupre GS, Delp SL (2009) Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J Biomech 42:898–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchi L, Angelini D, Lacquaniti F (1998a) Individual characteristics of human walking mechanics. Pflugers Arch 436:343–356

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L, Angelini D, Orani GP, Lacquaniti F (1998b) Kinematic coordination in human gait: relation to mechanical energy cost. J Neurophysiol 79:2155–2170

    CAS  PubMed  Google Scholar 

  • Bleyenheuft C, Detrembleur C (2012) Kinematic covariation in pediatric adult and elderly subjects: is gait control influenced by age? Clin Biomech (Bristol Avon) 27:568–572

    Article  Google Scholar 

  • Bleyenheuft C, Cockx S, Caty G, Stoquart G, Lejeune T, Detrembleur C (2009) The effect of botulinum toxin injections on gait control in spastic stroke patients presenting with a stiff-knee gait. Gait Posture 30:168–172

    Article  PubMed  Google Scholar 

  • Bleyenheuft C, Deltombe T, Detrembleur C (2013) Influence of ankle-foot orthoses on kinematic segmental covariation among stroke patients. Ann Phys Rehabil Med 56:3–13

    Article  CAS  PubMed  Google Scholar 

  • Bohannon RW (1997) Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age Ageing 26:15–19

    Article  CAS  PubMed  Google Scholar 

  • Borghese NA, Bianchi L, Lacquaniti F (1996) Kinematic determinants of human locomotion. J Physiol 494(Pt 3):863–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruening DA, Frimenko RE, Goodyear CD, Bowden DR, Fullenkamp AM (2015) Sex differences in whole body gait kinematics at preferred speeds. Gait Posture 41:540–545

    Article  PubMed  Google Scholar 

  • Cavanagh PR, Gregor RJ (1975) Knee joint torque during the swing phase of normal treadmill walking. J Biomech 8:337–344

    Article  CAS  PubMed  Google Scholar 

  • Chau T (2001) A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods. Gait Posture 13:49–66

    Article  CAS  PubMed  Google Scholar 

  • Chiu SL, Chou LS (2012) Effect of walking speed on inter-joint coordination differs between young and elderly adults. J Biomech 45:275–280

    Article  PubMed  Google Scholar 

  • Cho SH, Park JM, Kwon OY (2004) Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clin Biomech (Bristol, Avon) 19:145–152

    Article  CAS  Google Scholar 

  • Chow JW, Stokic DS (2015) Intersegmental coordination of gait after hemorrhagic stroke. Exp Brain Res 233:125–135

    Article  PubMed  Google Scholar 

  • Chow JW, Yablon SA, Horn TS, Stokic DS (2010) Temporospatial characteristics of gait in patients with lower limb muscle hypertonia after traumatic brain injury. Brain Inj 24:1575–1584

    Article  PubMed  Google Scholar 

  • Combs SA, Dugan EL, Ozimek EN, Curtis AB (2013) Bilateral coordination and gait symmetry after body-weight supported treadmill training for persons with chronic stroke. Clin Biomech (Bristol, Avon) 28:448–453

    Article  Google Scholar 

  • Dan B, Bouillot E, Bengoetxea A, Cheron G (2000) Effect of intrathecal baclofen on gait control in human hereditary spastic paraparesis. Neurosci Lett 280:175–178

    Article  CAS  PubMed  Google Scholar 

  • De Wit L, Molas M, Dejaeger E, De WW, Feys H, Jenni W, Lincoln N, Putman K, Schupp W, Lesaffre E (2009) The use of a biplot in studying outcomes after stroke. Neurorehabil Neural Repair 23:825–830

    Article  PubMed  Google Scholar 

  • den Otter AR, Geurts AC, Mulder T, Duysens J (2004) Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture 19:270–278

    Article  Google Scholar 

  • Donker SF, Beek PJ (2002) Interlimb coordination in prosthetic walking: effects of asymmetry and walking velocity. Acta Psychol (Amst) 110:265–288

    Article  Google Scholar 

  • Dubbeldam R, Buurke JH, Simons C, Groothuis-Oudshoorn CG, Baan H, Nene AV, Hermens HJ (2010) The effects of walking speed on forefoot hindfoot and ankle joint motion. Clin Biomech (Bristol, Avon) 25:796–801

    Article  CAS  Google Scholar 

  • England SA, Granata KP (2007) The influence of gait speed on local dynamic stability of walking. Gait Posture 25:172–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghanavati T, Karimi N, Salavati M (2014a) Gender differences in intra limb coordination while walking in older people. Iran Rehabil J 12:6–11

    Google Scholar 

  • Ghanavati T, Salavati M, Karimi N, Negahban H, Ebrahimi TI, Mehravar M, Hessam M (2014b) Intra-limb coordination while walking is affected by cognitive load and walking speed. J Biomech 47:2300–2305

    Article  PubMed  Google Scholar 

  • Grasso R, Peppe A, Stratta F, Angelini D, Zago M, Stanzione P, Lacquaniti F (1999) Basal ganglia and gait control: apomorphine administration and internal pallidum stimulation in Parkinson’s disease. Exp Brain Res 126:139–148

    Article  CAS  PubMed  Google Scholar 

  • Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4:627–635

    PubMed  PubMed Central  Google Scholar 

  • Hicheur H, Terekhov AV, Berthoz A (2006) Intersegmental coordination during human locomotion: does planar covariation of elevation angles reflect central constraints? J Neurophysiol 96:1406–1419

    Article  PubMed  Google Scholar 

  • Hutin E, Pradon D, Barbier F, Gracies JM, Bussel B, Roche N (2010) Lower limb coordination in hemiparetic subjects: impact of botulinum toxin injections into rectus femoris. Neurorehabil Neural Repair 24:442–449

    Article  PubMed  Google Scholar 

  • Hutin E, Pradon D, Barbier F, Bussel B, Gracies JM, Roche N (2012) Walking velocity and lower limb coordination in hemiparesis. Gait Posture 36:205–211

    Article  PubMed  Google Scholar 

  • Ihlen EA (2014) Age-related changes in inter-joint coordination during walking. J Appl Physiol 117:189–198

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Grasso R, Macellari V, Lacquaniti F (2002) Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. J Neurophysiol 87:3070–3089

    CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2006) Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophysiol 95:602–618

    Article  CAS  PubMed  Google Scholar 

  • Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2007) Modular control of limb movements during human locomotion. J Neurosci 27:11149–11161

    Article  CAS  PubMed  Google Scholar 

  • Jonkers I, Delp S, Patten C (2009) Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait Posture 29:129–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsdottir J, Cattaneo D, Regola A, Crippa A, Recalcati M, Rabuffetti M, Ferrarin M, Casiraghi A (2007) Concepts of motor learning applied to a rehabilitation protocol using biofeedback to improve gait in a chronic stroke patient: an A-B system study with multiple gait analyses. Neurorehabil Neural Repair 21:190–194

    Article  PubMed  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8:383–392

    Article  CAS  PubMed  Google Scholar 

  • Krasovsky T, Lamontagne A, Feldman AG, Levin MF (2014) Effects of walking speed on gait stability and interlimb coordination in younger and older adults. Gait Posture 39:378–385

    Article  PubMed  Google Scholar 

  • Lacquaniti F, Grasso R, Zago M (1999) Motor patterns in walking. News Physiol Sci 14:168–174

    PubMed  Google Scholar 

  • Laroche D, Ornetti P, Thomas E, Ballay Y, Maillefert JF, Pozzo T (2007) Kinematic adaptation of locomotor pattern in rheumatoid arthritis patients with forefoot impairment. Exp Brain Res 176:85–97

    Article  PubMed  Google Scholar 

  • Larsson LE, Odenrick P, Sandlund B, Weitz P, Oberg PA (1980) The phases of the stride and their interaction in human gait. Scand J Rehabil Med 12(3):107–112

    CAS  PubMed  Google Scholar 

  • Latt MD, Menz HB, Fung VS, Lord SR (2008) Walking speed, cadence and step length are selected to optimize the stability of head and pelvis accelerations. Exp Brain Res 184:201–209

    Article  PubMed  Google Scholar 

  • Lythgo N, Wilson C, Galea M (2011) Basic gait and symmetry measures for primary school-aged children and young adults. II: walking at slow, free and fast speed. Gait Posture 33:29–35

    Article  PubMed  Google Scholar 

  • Maclellan MJ, McFadyen BJ (2010) Segmental control for adaptive locomotor adjustments during obstacle clearance in healthy young adults. Exp Brain Res 202:307–318

    Article  PubMed  Google Scholar 

  • Murray MP, Kory RC, Clarkson BH, Sepic SB (1966) Comparison of free and fast speed walking patterns of normal men. Am J Phys Med 45:8–23

    Article  CAS  PubMed  Google Scholar 

  • Oberg T, Karsznia A, Oberg K (1994) Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 31:199–213

    CAS  PubMed  Google Scholar 

  • Patla AE (1985) Some characteristics of EMG patterns during locomotion: implications for the locomotor control process. J Mot Behav 17:443–461

    Article  CAS  PubMed  Google Scholar 

  • Plotnik M, Bartsch RP, Zeev A, Giladi N, Hausdorff JM (2013) Effects of walking speed on asymmetry and bilateral coordination of gait. Gait Posture 38:864–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinaldi LA, Monaco V (2013) Spatio-temporal parameters and intralimb coordination patterns describing hemiparetic locomotion at controlled speed. J Neuroeng Rehabil 10:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainani KL (2014) Introduction to principal components analysis. PM R 6:275–278

    Article  PubMed  Google Scholar 

  • Schmitz A, Silder A, Heiderscheit B, Mahoney J, Thelen DG (2009) Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol 19:1085–1091

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz MH, Rozumalski A, Trost JP (2008) The effect of walking speed on the gait of typically developing children. J Biomech 41:1639–1650

    Article  PubMed  Google Scholar 

  • Shemmell J, Johansson J, Portra V, Gottlieb GL, Thomas JS, Corcos DM (2007) Control of interjoint coordination during the swing phase of normal gait at different speeds. J Neuroeng Rehabil 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer JD, Willett JB (2003) Applied longitudinal data analysis: modeling change and event occurrence. Oxford University Press, Oxford, pp 23–33

    Book  Google Scholar 

  • Sousa AS, Silva A, Santos R, Sousa F, Tavares JM (2013) Interlimb coordination during the stance phase of gait in subjects with stroke. Arch Phys Med Rehabil 94:2515–2522

    Article  PubMed  Google Scholar 

  • Williams G, Morris ME, Schache A, McCrory PR (2009) Incidence of gait abnormalities after traumatic brain injury. Arch Phys Med Rehabil 90:587–593

    Article  PubMed  Google Scholar 

  • Zeni JA Jr, Richards JG, Higginson JS (2008) Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 27:710–714

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Mark Hemleben and L. Anthony Smith for their assistance. This work was supported in part by the Wilson Research Foundation, Jackson, MS, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Chow.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1342 kb)

Supplementary material 2 (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, J.W., Stokic, D.S. Intersegmental coordination scales with gait speed similarly in men and women. Exp Brain Res 233, 3175–3185 (2015). https://doi.org/10.1007/s00221-015-4386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4386-6

Keywords

Navigation