Skip to main content
Log in

Effects of support surface stability on feedback control of trunk posture

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study aimed to examine the interactions of visual, vestibular, proprioceptive, and tactile sensory manipulations and sitting on either a stable or an unstable surface on mediolateral (ML) trunk sway. Fifteen individuals were measured. In each trial, subjects sat as quiet as possible, on a stable or unstable surface, with or without each of four sensory manipulations: visual (eyes open/closed), vestibular (left and right galvanic vestibular stimulation alternating at 0.25 Hz), proprioceptive (left and right paraspinal muscle vibration alternating at 0.25 Hz), and tactile (minimal finger contact with object moving in the frontal plane at 0.25 Hz). The root mean square (RMS) and the power at 0.25 Hz (P25) of the ML trunk acceleration were the dependent variables. The latter was analyzed only for the rhythmic sensory manipulations and the reference condition. RMS was always significantly larger on the unstable than the stable surface. Closing the eyes caused a significant increase in RMS, more so on the unstable surface. Vestibular stimulation significantly increased RMS and P25 and more so on the unstable surface. Main effects of the proprioceptive manipulation were significant, but the interactions with surface condition were not. Finally, also tactile manipulation increased RMS and P25, but did not interact with surface condition. Sensory information in feedback control of trunk posture appears to be reweighted depending on stability of the environment. The absolute effects of visual and vestibular manipulations increase on an unstable surface, suggesting a relative decrease in the weights of proprioceptive and tactile information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asslander L, Peterka RJ (2014) Sensory reweighting dynamics in human postural control. J Neurophysiol 111(9):1852–1864

    Article  PubMed  Google Scholar 

  • Brumagne S, Cordo P, Verschueren S (2004) Proprioceptive weighting changes in person with low back pain and elderly persons during upright standing. Neurosci Lett 366:63–66

    Article  CAS  PubMed  Google Scholar 

  • Brumagne S, Janssens L, Knapen S et al (2008) Persons with recurrent low back pain exhibit a rigid postural control strategy. Eur Spine J 17:1177–1184

    Article  PubMed Central  PubMed  Google Scholar 

  • Carver S, Kiemel T, Jeka JJ (2006) Modeling the dynamics of sensory reweighting. Biol Cybern 95(2):123–134

    Article  PubMed  Google Scholar 

  • Cholewicki J, Panjabi MM, Khachatryan A (1997) Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine 22(19):2207–2212

    Article  CAS  PubMed  Google Scholar 

  • Cholewicki J, Polzhofer GK, Radebold A (2000) Postural control of trunk during unstable sitting. J Biomech 33:1733–1737

    Article  CAS  PubMed  Google Scholar 

  • Claeys K, Brumagne S, Dankaerts W, Kiers H, Janssens L (2011) Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur J Appl Physiol 111:115–123

    Article  PubMed  Google Scholar 

  • Cohen B, Yakushin SB, Holstein GR (2012) What does galvanic vestibular stimulation actually activate? Front Neurol 2:1–2

    Google Scholar 

  • Crisco JJ, Panjabi MM (1992) Euler stability of the human ligamentous lumbar spine, Part I: theory. Clin Biomech 7:19–26

    Article  Google Scholar 

  • Fitzpatrick R, Burke D, Gandevia SC (1994) Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol 478(2):P363–P372

    Article  Google Scholar 

  • Fransson PA, Hjerpe M, Johansson R (2007) Adaptation of multi-segmented body movements during vibratory proprioceptive and galvanic vestibular stimulation. J Vest Res 17(1):47–62

    Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PBC (1972) The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–748

    Article  CAS  PubMed  Google Scholar 

  • Goodworth AD, Peterka RJ (2009) Contribution of sensorimotor integration to spinal stabilization in humans. J Neurophysiol 102:496–512

    Article  PubMed Central  PubMed  Google Scholar 

  • Holden M, Ventura J, Lackner JR (1994) Stabilization of posture by precision contact of the index finger. J Vestib Res 4(4):285–301

    CAS  PubMed  Google Scholar 

  • Ivanenko YP, Talis VL, Kazennikov OV (1999) Support stability influences postural responses to muscle vibration in humans. Eur J Neurosci 11(2):647–654

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100:495–502

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Schoner G, Dijkstra T, Ribeiro P, Lackner JR (1997) Coupling of fingertip somatosensory information to head and body sway. Exp Bain Res 113:475–483

    Article  CAS  Google Scholar 

  • Jeka JJ, Oie K, Schoner G, DIjkstra T, Henson E (1998) Position and velocity coupling of postural sway to somatosensory drive. J Neurophysiol 79:1661–1674

    CAS  PubMed  Google Scholar 

  • Kiers H, Brumagne S, van Dieen JH, van der Wees P, Vanhees L (2012) Ankle proprioception is not targeted by exercises on an unstable surface. Eur J App Physiol 112:1577–1585

    Article  Google Scholar 

  • Lackner JR, Rabin E, DiZio P (2000) Fingertip contact suppress the destabilizing influence of leg muscle vibration. J Neurophysiol 84:2217–2224

    CAS  PubMed  Google Scholar 

  • Lestienne FG, Gurfinkel VS (1988) Postural control in weightlessness: a dual process underlying adaptation to an unusual environment. Trends Neurossci 11(8):359–363

    Article  CAS  Google Scholar 

  • Maaswinkel E, Veeger HEJ, Dieen JHV (2014) Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture. Gait Posture 39:745–749

    Article  CAS  PubMed  Google Scholar 

  • Mahboobin A, Loughlin P, Atkeson C, Redfern M (2009) A mechanism for sensory re-weighting in postural control. Med Biol Eng Comput 47(9):921–929

    Article  PubMed  Google Scholar 

  • Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38(1):35–56

    Article  CAS  PubMed  Google Scholar 

  • Maurer C, Mergner T, Peterka RJ (2006) Multisensory control of human upright stance. Exp Brain Res 171:231–250

    Article  CAS  PubMed  Google Scholar 

  • Mazaheri M, Coenen P, Parnianpour M, Kiers H, van Dieen JH (2013) Low back pain and postural sway during quiet standingwith and without sensory manipulation: a systematic review. Gait and Posture 37(1):12–22

    Article  PubMed  Google Scholar 

  • Mergner T, Rosemeier T (1998) Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—a perceptual model. Brain Res Rev 28:118–135

    Article  CAS  PubMed  Google Scholar 

  • Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation and enhancement. J Spinal Disord 5(4):383–389

    Article  CAS  PubMed  Google Scholar 

  • Pasma JH, Boonstra TA, Camptens SF, Schouten AC, Van der Kooij H (2012) Sensory reweighting of proprioceptive information of the left and right leg during human balance control. J Neurophysiol 108:1138–1148

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    CAS  PubMed  Google Scholar 

  • Polastri PF, Barela JA, Kiemel T, Jeka JJ (2012) Dynamics of inter-modality re-weighting during human postural control. Exp Brain Res 223:99–108

    Article  PubMed  Google Scholar 

  • Radebold A, Cholewicki J, Polzhofer GK, Greene HS (2001) Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine 26(7):724–730

    Article  CAS  PubMed  Google Scholar 

  • Reeves NP, Everding VQ, Cholewicki J, Morrisette DC (2006) The effects of trunk stiffness on postural control during unstable seated balance. Exp Brain Res 174:694–700

    Article  PubMed  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222

    Article  CAS  PubMed  Google Scholar 

  • Silfies SP, Cholewicki J, Radebold A (2003) The effects of visual input on postural control of the lumbar spine in unstable sitting. Hum Mov Sci 22:237–252

    Article  PubMed  Google Scholar 

  • Slota GP, Granata KP, Madigan ML (2008) Effects of seated whole-body vibration on postural control of the trunk during unstable seated balance. Clin Biomech 23:381–386

    Article  Google Scholar 

  • Solomonow M (2004) Ligaments: a source of work-related musculoskeletal disorders. J Electromyogr Kinesiol 14:49–60

    Article  CAS  PubMed  Google Scholar 

  • van der Burg JCE, van Wegen EEH, Rietberg MB, Kwakkel G, van Dieen JH (2006) Postural control of the trunk during unstable sitting in Parkinson’s disease. Parkisonism Relat Disord 12(8):492–498

    Article  Google Scholar 

  • van der Kooij H, Peterka RJ (2011) Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of system with sensory and motor noise. J Comput Neurosci 30:759–778

    Article  PubMed Central  PubMed  Google Scholar 

  • van der Kooij H, van Asseldonk E, van der Helm FCT (2005) Comparison of different methods to identify and quantify balance control. J Neurosci Methods 145(1–2):175–203

    Article  PubMed  Google Scholar 

  • van Dieen JH, Kingma I, van den Burg JCE (2003) Evidence for a role of antagonistic cocontraction in controlling trunk stiffness during lifting. J Biomech 36:1829–1836

    Article  PubMed  Google Scholar 

  • Willigenburg NW, Kingma I, Hoozemans MJM, van Dieen JH (2013) Precision control of trunk movement in low back pain patients. Hum Mov Sci 32(1):228–239

    Article  PubMed  Google Scholar 

  • Wing AM, Johannsen L, Endo S (2011) Light touch for balance: influence of a time-varying external driving signal. Phil Trans R Soc B 366:3133–3141

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

L. Eduardo Cofré Lizama was funded by the European Commission through MOVE-AGE, an Erasmus Mundus Joint Doctorate program (2011–0015). E. Maaswinkel was supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO) and partly funded by the Ministry of Economic Affairs.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap H. van Dieën.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreopoulou, G., Maaswinkel, E., Cofré Lizama, L.E. et al. Effects of support surface stability on feedback control of trunk posture. Exp Brain Res 233, 1079–1087 (2015). https://doi.org/10.1007/s00221-014-4185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4185-5

Keywords

Navigation