Skip to main content

Advertisement

Log in

Control of reach extent with the paretic and nonparetic arms after unilateral sensorimotor stroke: kinematic differences based on side of brain damage

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Scaling of reach kinematics to targets that vary in distance is indicative of the use of planning and feedback-based adjustments. The control of reach extent, however, has not been reported for the paretic arm after stroke. The purpose of this study was to determine whether individuals post-stroke utilized planning (scaling acceleration magnitude) and feedback-based adjustments (scaling acceleration duration) to reach to targets that varied in distance. Individuals with mild-to-moderate motor impairment after stroke and nondisabled adults reached with both arms to targets presented at three distances (8, 16, 24 cm). Kinematic data were used to determine scaling of peak acceleration magnitude and duration to target distance and compared between arms (control, nonparetic, paretic). Despite differences in the magnitude of movement variables, individuals post-stroke utilized both planning and feedback-based adjustments to meet the demands of the task with the nonparetic and paretic arms in a similar manner as controls. However, there was variability in the use of planning with the paretic arm, some individuals utilized planning while others did not. After right brain damage, differences in reach control related to the specialized role this hemisphere plays in endpoint control were found in both arms; no hemisphere-specific changes were found after left brain damage (LBD). The appearance of hemispheric-specific effects after right but not LBD were not due to age, degree of motor impairment, or time post-stroke, but, instead, may be related to relative differences in visual-motor processing ability, lesion characteristics, or interhemispheric inhibition changes between groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337:1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Brown SH, Cooke JD (1981) Responses to force perturbations preceding voluntary human arm movements. Brain Res 220:350–355

    Article  CAS  PubMed  Google Scholar 

  • Calarusso RP, Hammill DD (1972) The Motor-Free Visual Perception Test (MVPT). Academic Therapy, San Rafael

    Google Scholar 

  • Carter AR, Astafiev SV, Lang CE et al (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375

    PubMed Central  PubMed  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R (2002) The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol 543:317–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999) Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res 124:520–524

    Article  PubMed  Google Scholar 

  • Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ (1999) The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 30:2131–2140

    Article  CAS  PubMed  Google Scholar 

  • Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG (2005) Transcallosal inhibition in chronic subcortical stroke. Neuroimage 28:940–946

    Article  PubMed  Google Scholar 

  • Duque J, Murase N, Celnik P et al (2007) Intermanual differences in movement-related interhemispheric inhibition. J Cogn Neurosci 19:204–213

    Article  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 7:13–31

    CAS  PubMed  Google Scholar 

  • Gerloff C, Cohen LG, Floeter MK, Chen R, Corwell B, Hallett M (1998) Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol 510(Pt 1):249–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldenberg G (1996) Defective imitation of gestures in patients with damage in the left or right hemispheres. J Neurol Neurosurg Psychiatry 61:176–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldenberg G (1999) Matching and imitation of hand and finger postures in patients with damage in the left or right hemispheres. Neuropsychologia 37:559–566

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Ghez C (1987a) Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res 67:241–252

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Ghez C (1987b) Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp Brain Res 67:253–269

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Cooper SE, Ghez C (1994a) Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Exp Brain Res 99:112–130

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994b) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99:97–111

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb GL, Corcos DM, Agarwal GC (1989) Organizing principles for single-joint movements. I. A speed-insensitive strategy. J Neurophysiol 62:342–357

    CAS  PubMed  Google Scholar 

  • Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246

    Article  PubMed  Google Scholar 

  • Haaland KY, Schaefer SY, Knight RT, Adair J, Magalhaes A, Sadek J, Sainburg RL (2009) Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage. Exp Brain Res 196:195–204

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris JE, Eng JJ (2006) Individuals with the dominant hand affected following stroke demonstrate less impairment than those with the nondominant hand affected. Neurorehabil Neural Repair 20:380–389

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartman-Maeir A, Katz N (1995) Validity of the Behavioral Inattention Test (BIT): relationships with functional tasks. Am J Occup Ther 49:507–516

    Article  CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Lai SM, Studenski S, Duncan PW, Perera S (2002) Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 33:1840–1844

    Article  PubMed  Google Scholar 

  • Lai SM, Studenski S, Richards L, Perera S, Reker D, Rigler S, Duncan PW (2006) Therapeutic exercise and depressive symptoms after stroke. J Am Geriatr Soc 54:240–247

    Article  PubMed  Google Scholar 

  • Lang CE, Wagner JM, Bastian AJ, Hu Q, Edwards DF, Sahrmann SA, Dromerick AW (2005) Deficits in grasp versus reach during acute hemiparesis. Exp Brain Res 166:126–136

    Article  PubMed  Google Scholar 

  • Levin MF (1996) Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119(Pt 1):281–293

    Article  PubMed  Google Scholar 

  • Levin MF, Michaelsen SM, Cirstea CM, Roby-Brami A (2002) Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp Brain Res 143:171–180

    Article  PubMed  Google Scholar 

  • Lewis GN, Perreault EJ (2007) Side of lesion influences interhemispheric inhibition in subjects with post-stroke hemiparesis. Clin Neurophysiol 118:2656–2663

    Article  PubMed Central  PubMed  Google Scholar 

  • Lyle RC (1981) A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 4:483–492

    Article  CAS  PubMed  Google Scholar 

  • Mani S, Mutha PK, Przybyla A, Haaland KY, Good DC, Sainburg RL (2013) Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain 136:1288–1303

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayo NE, Wood-Dauphinee S, Cote R, Durcan L, Carlton J (2002) Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil 83:1035–1042

    Article  PubMed  Google Scholar 

  • McCombe Waller S, Whitall J (2005) Hand dominance and side of stroke affect rehabilitation in chronic stroke. Clin Rehabil 19:544–551

    Article  PubMed  Google Scholar 

  • Messier J, Kalaska JF (1999) Comparison of variability of initial kinematics and endpoints of reaching movements. Exp Brain Res 125:139–152

    Article  CAS  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    Article  PubMed  Google Scholar 

  • Mutha PK, Sainburg RL (2007) Control of velocity and position in single joint movements. Hum Mov Sci 26:808–823

    Article  PubMed Central  PubMed  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2011a) Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain 134:3647–3661

    Article  PubMed  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2011b) Left parietal regions are critical for adaptive visuomotor control. J Neurosci 31:6972–6981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S (2005) Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 36:1480–1484

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Pfann KD, Hoffman DS, Gottlieb GL, Strick PL, Corcos DM (1998) Common principles underlying the control of rapid, single degree-of-freedom movements at different joints. Exp Brain Res 118:35–51

    Article  CAS  PubMed  Google Scholar 

  • Portney L, Watkins M (2009) Foundations of clinical research: applications to practice. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Rinehart JK, Singleton RD, Adair JC, Sadek JR, Haaland KY (2009) Arm use after left or right hemiparesis is influenced by hand preference. Stroke 40:545–550

    Article  PubMed  Google Scholar 

  • Sabes PN (2000) The planning and control of reaching movements. Curr Opin Neurobiol 10:740–746

    Article  CAS  PubMed  Google Scholar 

  • Sainburg RL, Schaefer SY (2004) Interlimb differences in control of movement extent. J Neurophysiol 92:1374–1383

    Article  PubMed Central  PubMed  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2007) Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain 130:2146–2158

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt RA, Lee TD (2005) Motor control and learning. A behavioral emphasis. Human Kinetics, Champaign

    Google Scholar 

  • Stewart JC, Gordon J, Winstein CJ (2013) Planning and adjustments for the control of reach extent in a virtual environment. J Neuroeng Rehabil 10:27

    Article  PubMed Central  PubMed  Google Scholar 

  • van Vliet PM, Sheridan MR (2009) Ability to adjust reach extent in the hemiplegic arm. Physiotherapy 95:176–184

    Article  PubMed  Google Scholar 

  • Velicki MR, Winstein CJ, Pohl PS (2000) Impaired direction and extent specification of aimed arm movements in humans with stroke-related brain damage. Exp Brain Res 130:362–374

    Article  CAS  PubMed  Google Scholar 

  • Wagner JM, Dromerick AW, Sahrmann SA, Lang CE (2007a) Upper extremity muscle activation during recovery of reaching in subjects with post-stroke hemiparesis. Clin Neurophysiol 118:164–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Wagner JM, Lang CE, Sahrmann SA, Edwards DF, Dromerick AW (2007b) Sensorimotor impairments and reaching performance in subjects with poststroke hemiparesis during the first few months of recovery. Phys Ther 87:751–765

    Article  PubMed  Google Scholar 

  • Winter D (2005) Biomechanics and motor control of human movement. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217

    Article  CAS  PubMed  Google Scholar 

  • York CD, Cermak SA (1995) Visual perception and praxis in adults after stroke. Am J Occup Ther 49:543–550

    Article  CAS  PubMed  Google Scholar 

  • Yozbatiran N, Der-Yeghiaian L, Cramer SC (2008) A standardized approach to performing the action research arm test. Neurorehabil Neural Repair 22:78–90

    Article  PubMed  Google Scholar 

  • Ziemann U, Hallett M (2001) Hemispheric asymmetry of ipsilateral motor cortex activation during unimanual motor tasks: further evidence for motor dominance. Clin Neurophysiol 112:107–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Lee Johnson and Bruce Larson for assistance with modifications to the virtual reality system and Liang-Ching Tsai for figure development. The virtual reality system used in this study was provided by Innovative Sports Training, Inc. Funding for this research was provided in part through a Mary McMillan Doctoral Scholarship and a Promotion of Doctoral Studies II Scholarship from the Foundation for Physical Therapy and a grant from the California Physical Therapy Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolee J. Winstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, J.C., Gordon, J. & Winstein, C.J. Control of reach extent with the paretic and nonparetic arms after unilateral sensorimotor stroke: kinematic differences based on side of brain damage. Exp Brain Res 232, 2407–2419 (2014). https://doi.org/10.1007/s00221-014-3938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3938-5

Keywords

Navigation