Skip to main content
Log in

Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 11 April 2014

Abstract

Transcranial magnetic stimulation (TMS) applied over the occipital lobe approximately 100 ms after the onset of a stimulus decreases its visibility if it appears in the location of the phosphene. Because phosphenes can also be elicited by stimulation of the parietal regions, we asked if the same procedure that is used to reduce visibility of stimuli with occipital TMS will lead to decreased stimulus visibility when TMS is applied to parietal regions. TMS was randomly applied at 0–130 ms after the onset of the stimulus in steps of 10 ms in occipital and parietal regions. Participants responded to the orientation of the line stimulus and rated its visibility. We replicate previous reports of phosphenes from both occipital and parietal TMS. As previously reported, we also observed visual suppression around the classical 100 ms window both in the objective line orientation and subjective visibility responses with occipital TMS. Parietal stimulation, on the other hand, did not consistently reduce stimulus visibility in any time window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahamayan A, Clifford CWG, Ruzzoli M, Phillips D, Arabzadeh E et al (2011) Accurate and rapid estimation of phosphene thresholds (REPT). PLoS One 6:e22342

    Article  Google Scholar 

  • Ahissar M, Nahum M, Nelken I, Hochstein S (2009) Reverse hierarchies and sensory learning. Philos Trans R Soc Lond B Biol Sci 364:285–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458–462

    Article  CAS  PubMed  Google Scholar 

  • Barker AT, Freeston IL, Jalinous R, Merton PA, Morton HB (1985) Magnetic stimulation of the human brain. J Physiol (Lond) 369:3P

    Google Scholar 

  • Bullier J (2001) Integrated model of visual processing. Brain Res Brain Res Rev 36:96–107

    Article  CAS  PubMed  Google Scholar 

  • Corthout E, Uttl B, Walsh V, Hallett M, Cowey A (1999a) Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. NeuroReport 10:2631–2634

    Article  CAS  PubMed  Google Scholar 

  • Corthout E, Uttl B, Ziemann U, Cowey A, Hallett M (1999b) Two periods of processing in the (circum)striate visual cortex as revealed by transcranial magnetic stimulation. Neuropsychologia 37:137–145

    CAS  PubMed  Google Scholar 

  • Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighter, blind and blindsighted observers. Neuroreport 11:3269–3273

    Article  CAS  PubMed  Google Scholar 

  • de Graaf TA, Goebel R, Sack AT (2011a) Feedforward and quick recurrent processes in early visual cortex revealed by TMS? Neuroimage 61:651–659

    Article  PubMed  Google Scholar 

  • de Graaf TA, Herring J, Sack AT (2011b) A chronometric exploration of high-resolution ‘sensitive TMS masking’ effects on subjective and objective measures of vision. Exp Brain Res 209:19–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Lollo V, Enns JT, Rensink RA (2000) Competition for consciousness among visual events: the psychophysics of reentrant processes. J Exp Psychol Hum Percept Psychol 129:481–507

    Google Scholar 

  • Fahrenfort JJ, Scholte HS, Lamme VAF (2007) Masking disrupts reentrant processing in human visual cortex. J Cogn Neurosci 9:1488–1497

    Article  Google Scholar 

  • Felleman D, Van Essen D (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Alfaro A, Tormos JM, Climent R, Martinez M, Vilanova H, Walsh V, Pascual-Leone A (2002) Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Brain Res Protoc 10:115–124

    Article  CAS  PubMed  Google Scholar 

  • Ffytche DH, Howseman A, Edwards R, Sandeman DR, Zeki S (2000) Human area V5 and motion in the ipsilateral visual Weld. Eur J Neurosci 12:3015–3025

    Article  CAS  PubMed  Google Scholar 

  • Fried PJ, Elkin-Frankston S, Rushmore RJ, Hilgetag CC, Valero-Cabre A (2011) Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex. PLoS One 6(11):e27204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gross CG, Bender DB, Mishkin M (1977) Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons. Brain Res 131:227–239

    Article  CAS  PubMed  Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Article  CAS  PubMed  Google Scholar 

  • Herwig U, Satrapi P, Schonfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99

    Article  PubMed  Google Scholar 

  • Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36:791–804

    Article  CAS  PubMed  Google Scholar 

  • Jacobs C, Goebel R, Sack AT (2012) Visual awareness suppression by pre-stimulus brain stimulation: a neural effect. Neuroimage 59:616–624

    Article  PubMed  Google Scholar 

  • Kamitani Y, Shimojo S (1999) Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nat Neurosci 2:767–771

    Article  CAS  PubMed  Google Scholar 

  • Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198

    CAS  PubMed  Google Scholar 

  • Kammer T (2007) Visual masking by transcranial magnetic stimulation in the first 80 milliseconds. Adv Cogn Psychol 3:177–179

    Article  PubMed Central  Google Scholar 

  • Kammer T, Puls K, Erb M, Grodd W (2005a) Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160:129–140

    Article  PubMed  Google Scholar 

  • Kammer T, Puls K, Strasburger H, Hill NJ, Wichmann FA (2005b) Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression. Exp Brain Res 160:118–128

    Article  PubMed  Google Scholar 

  • Kastner S, Demmer I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp Brain Res 118:19–26

    Article  CAS  PubMed  Google Scholar 

  • Knight R, Mazzi C, Savazzi S (2013) Shining new light on dark perceptions: visual percepts induced by TMS of the occipital cortex. Poster presented at the annual Cognitive Neuroscience Society (CNS) meeting. San Francisco, CA, April 13–16

  • Koivisto M, Mäntylä T, Silvanto J (2010) The role of early visual cortex (V1/V2) in conscious and unconscious visual perception. Neuroimage 51:828–834

    Article  PubMed  Google Scholar 

  • Koivisto M, Railo H, Salminen-Vaparanta N (2011) Transcranial magnetic stimulation of early visual cortex interferes with subjective visual awareness and objective forced-choice performance. Conscious Cogn 20:288–298

    Article  PubMed  Google Scholar 

  • Koivisto M, Mäntylä T, Silvanto J (2012) Unconscious response priming by shape depends on geniculostriate visual projection. Eur J Neurosci 35:623–633

    Article  PubMed  Google Scholar 

  • Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11:224–231

    Article  CAS  PubMed  Google Scholar 

  • Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    Article  CAS  PubMed  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurol 428:79–111

    Article  CAS  PubMed  Google Scholar 

  • Macknik S, Martinez-Conde S (2007) The role of feedback in visual masking and visual processing. Adv Cogn Psychol 3:125–152

    Article  PubMed Central  Google Scholar 

  • Marg E, Rudiak D (1994) Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom Vis Sci 71:301–311

    Article  CAS  PubMed  Google Scholar 

  • Marzi CA, Antonini A, Di Stefano M, Legg CR (1982) The contribution of the corpus callosum to receptive Welds in the lateral suprasylvian visual areas of the cat. Behav Brain Res 4:155–176

    Article  CAS  PubMed  Google Scholar 

  • Marzi C, Mancini F, Savazzi S (2009) Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation. Exp Brain Res 192:431–441

    Article  PubMed  Google Scholar 

  • Morgan M (1999) Making holes in the visual world. Nat Neurosci 2:685–686

    Article  CAS  PubMed  Google Scholar 

  • Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667

    Article  PubMed  Google Scholar 

  • Panichello M, Cheung O, Bar M (2012) Predictive feedback and conscious visual experience. Front Psychol 3:620

    PubMed Central  PubMed  Google Scholar 

  • Parks NA, Beck D, Low KA, Maclin EL, Tapia E, Savazzi S, Mazzi C, Fabiani M, Gratton G (2013) Dynamic measurement of functional connectivity using simultaneous fast optical imaging and magnetic stimulation. Talk presented at the annual Society for Psychophysiological Research (SPR) meeting, Florence, Italy, October 2–6

  • Railo H, Koivisto M (2012) Two means of suppressing visual awareness: a direct comparison of visual masking and transcranial magnetic stimulation. Cortex 48:333–343

    Article  PubMed  Google Scholar 

  • Sack AT, van der Mark T, Schuhmann T, Schwarzbach J, Goebel R (2009) Symbolic action priming relies on intact neural transmission along the retino-geniculo-striate pathway. Neuroimage 44:284–293

    Article  PubMed  Google Scholar 

  • Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13:488–495

    Article  PubMed Central  PubMed  Google Scholar 

  • Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94:1358–1371

    Article  PubMed Central  PubMed  Google Scholar 

  • Stokes MG, Chambers CD, Gould IC, English T, McNaught E, McDonald O, Mattingley JB (2007) Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin Neurophysiol 118:1617–1625

    Article  PubMed  Google Scholar 

  • Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337

    Article  CAS  PubMed  Google Scholar 

  • Thielscher A, Reichenbach A, Uğurbil K, Uludağ K (2010) The cortical site of visual suppression by transcranial magnetic stimulation. Cereb Cortex 20:328–338

    Article  CAS  PubMed  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4:470–483

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dustin Martin, Martin Prete and Lu Echo Ye for assistance with data collection. This research was conducted while Evelina Tapia was a postdoctoral trainee in the Cognitive Psychophysiology Training Program at the Department of Psychology, University of Illinois at Urbana–Champaign (National Institute of Mental Health National Research Service Award MH19554 to the University of Illinois).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelina Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapia, E., Mazzi, C., Savazzi, S. et al. Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility. Exp Brain Res 232, 1989–1997 (2014). https://doi.org/10.1007/s00221-014-3888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3888-y

Keywords

Navigation