Skip to main content
Log in

Adaptation of lift forces in object manipulation through action observation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The ability to predict accurately the weights of objects is essential for skilled and dexterous manipulation. A potentially important source of information about object weight is through the observation of other people lifting objects. Here, we tested the hypothesis that when watching an actor lift an object, people naturally learn the object’s weight and use this information to scale forces when they subsequently lift the object themselves. Participants repeatedly lifted an object in turn with an actor. Object weight unpredictably changed between 2 and 7 N every 5th to 9th of the actor’s lifts, and the weight lifted by the participant always matched that previously lifted by the actor. Even though the participants were uninformed about the structure of the experiment, they appropriately adapted their lifting force in the first trial after a weight change. Thus, participants updated their internal representation about the object’s weight, for use in action, when watching a single lift performed by the actor. This ability presumably involves the comparison of predicted and actual sensory information related to actor’s actions, a comparison process that is also fundamental in action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Alaerts K, Senot P, Swinnen SP, Craighero L, Wenderoth N, Fadiga L (2010a) Force requirements of observed object lifting are encoded by the observer’s motor system: a TMS study. Eur J Neurosci 31:1144–1153

    Article  PubMed  Google Scholar 

  • Alaerts K, Swinnen SP, Wenderoth N (2010b) Observing how others lift light or heavy objects: which visual cues mediate the encoding of muscular force in the primary motor cortex? Neuropsychologia 48:2082–2090

    Article  PubMed  Google Scholar 

  • Baugh LA, Kao M, Johansson RS, Flanagan JR (2012) Material Evidence- interaction of well-learned priors and sensorimotor memory when lifting objects. J Neurophysiol 108:1262–1269

    Article  PubMed  Google Scholar 

  • Bingham GP (1987) Kinematic form and scaling: further investigations on the visual perception of lifted weight. J Exp Psychol Hum Percept Perform 13:155–177

    Article  PubMed  CAS  Google Scholar 

  • Brass M, Schmitt RM, Spengler S, Gergely G (2007) Investigating action understanding: inferential processes versus action simulation. Curr Biol 17:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor task variation induces structural learning. Curr Biol 19:352–357

    Article  PubMed  CAS  Google Scholar 

  • Braun DA, Waldert S, Aertsen A, Wolpert DM, Mehring C (2010) Structure learning in a sensorimotor association task. PLoS One 5:e8973

    Article  PubMed  Google Scholar 

  • Brown LE, Wilson ET, Obhi SS, Gribble PL (2010) Effect of trial order and error magnitude on motor learning by observing. J Neurophysiol 104:1409–1416

    Article  PubMed  Google Scholar 

  • Falck-Ytter T, Gredeback G, von Hofsten C (2006) Infants predict other people’s action goals. Nat Neurosci 9:878–879

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Beltzner MA (2000) Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat Neurosci 3:737–741

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Johansson RS (2003) Action plans used in action observation. Nature 424:769–771

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Bowman MC, Johansson RS (2006) Control strategies in object manipulation tasks. Curr Opin Neurobiol 16:650–659

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Bittner JP, Johansson RS (2008) Experience can change distinct size-weight priors engaged in lifting objects and judging their weights. Curr Biol 18:1742–1747

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69:1789–1796

    PubMed  CAS  Google Scholar 

  • Hamilton AF, Joyce DW, Flanagan JR, Frith CD, Wolpert DM (2007) Kinematic cues in perceptual weight judgement and their origins in box lifting. Psychol Res 71:13–21

    Article  PubMed  Google Scholar 

  • Hesse MD, Sparing R, Fink GR (2009) End or means–the “what” and “how” of observed intentional actions. J Cogn Neurosci 21:776–790

    Article  PubMed  Google Scholar 

  • Heyes CM, Foster CL (2002) Motor learning by observation: evidence from a serial reaction time task. Q J Exp Psychol A 55:593–607

    PubMed  CAS  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti G (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98:13995–13999

    Article  PubMed  CAS  Google Scholar 

  • Ingram JN, Howard IS, Flanagan JR, Wolpert DM (2010) Multiple grasp-specific representations of tool dynamics mediate skillful manipulation. Curr Biol 20:618–623

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71:59–71

    PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (2005) Motor control and learning in altered dynamic environments. Curr Opin Neurobiol 15:653–659

    Article  PubMed  CAS  Google Scholar 

  • Land MF, Furneaux S (1997) The knowledge base of the oculomotor system. Philos Trans R Soc Lond B Biol Sci 352:1231–1239

    Article  PubMed  CAS  Google Scholar 

  • Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL (2010) fMRI activation during observation of others’ reach errors. Journal of Cogn Neurosci 22:1493–1503

    Article  Google Scholar 

  • Mattar AA, Gribble PL (2005) Motor learning by observing. Neuron 46:153–160

    Article  PubMed  CAS  Google Scholar 

  • Meulenbroek RG, Bosga J, Hulstijn M, Miedl S (2007) Joint-action coordination in transferring objects. Exp Brain Res 180:333–343

    Article  PubMed  Google Scholar 

  • Oztop E, Wolpert D, Kawato M (2005) Mental state inference using visual control parameters. Brain Res Cogn Brain Res 22:129–151

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fabbri-Destro M (2008) The mirror system and its role in social cognition. Curr Opin Neurobiol 18:179–184

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670

    Article  PubMed  CAS  Google Scholar 

  • Rotman G, Troje NF, Johansson RS, Flanagan JR (2006) Eye movements when observing predictable and unpredictable actions. J Neurophysiol 96:1358–1369

    Article  PubMed  Google Scholar 

  • Runeson S, Frykholm G (1981) Visual perception of lifted weight. J Exp Psychol 7:733–740

    CAS  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  PubMed  CAS  Google Scholar 

  • Shim J, Carlton LG (1997) Perception of kinematic characteristics in the motion of lifted weight. J Mot Behav 29:131–146

    Article  PubMed  Google Scholar 

  • Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L (2007) The what and how of observational learning. J Cogn Neurosci 19:1656–1663

    Article  PubMed  Google Scholar 

  • Webb A, Knott A, Macaskill MR (2010) Eye movements during transitive action observation have sequential structure. Acta Psychol (Amst) 133:51–56

    Article  Google Scholar 

  • Westling G, Johansson RS (1987) Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res 66:128–140

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Flanagan JR (2010) Motor learning. Curr Biol 20:R467–R472

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z, Flanagan JR (2001) Perspectives and problems in motor learning. Trends Cogn Sci 5:487–494

    Article  PubMed  Google Scholar 

  • Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond Ser B Biol Sci 358:593–602

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research, the Swedish Research Council Project 08667, and the Strategic Research Program in Neuroscience at the Karolinska Institute. We would like to thank Sean Hickman and Martin York for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Randall Flanagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichelt, A.F., Ash, A.M., Baugh, L.A. et al. Adaptation of lift forces in object manipulation through action observation. Exp Brain Res 228, 221–234 (2013). https://doi.org/10.1007/s00221-013-3554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3554-9

Keywords

Navigation